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Abstract

In this paper we propose a new e�ective tool for evaluating the

normalizing constant of an arbitrary density function with the aid of

an arbitrary MC or MCMC sampling scheme. The new original esti-

mators proposed here stem from the idea of suitably perturbing the

original target density function whose normalizing constant has to be

evaluated in such a way that the perturbed density has the same orig-

inal normalizing constant plus a known arbitrary positive mass. The

proposed estimators can be easily implemented sharing the original

simplicity of the harmonic mean estimator of Newton and Raftery

(1994) yielding consistent MC or MCMC estimators based only on a

simulated sample from the distribution proportional to the original

density. However, under fairly general su�cient conditions, they avoid

the in�nite variance shortcoming. E�ectiveness is illustrated through

controlled simulated examples with distributions in dimension one up

to one hundred, as well as on a more practical context of real data

sets. Extensions to the ratio of constants is discussed together with

relations of the new proposed approach with bridge sampling and path

sampling.

Key Words: Normalizing constant; MCMC; Integrated Likelihood;

Generalized Harmonic Mean; Bridge Sampling; Path Sampling; Bayesian

inference.
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1 Introduction

Evaluating the normalizing constant of a probability density function known
only up to a multiplicative constant is a fundamental part of many statistical
problems. Gelman and Meng (1998) gives an account of other intertwined
�elds where the problem of evaluating

c =

∫
Θ

g(θ)dθ. (1)

is also of interest, ranging from missing data problems to computational
physics from spatial statistics to computational chemistry. The need of ef-
�cient and �exible tools for evaluating normalizing constants is particularly
called for in Bayesian computations. When the integral cannot be solved an-
alytically possible general approaches to tackle the integration problem can
be reduced to two mainstreams: either numerical solutions by approximat-
ing the integrand function with sums of functions with analytical computable
integrals or via simulation techniques. The interest in improving currently
available tools and comparing their performances is still very high. Among
the most recent review paper are Clyde et al. (2006), Han and Carlin (2001),
Gelman and Meng (1998) and Chen and Shao (1997). More recent and
less recent tools for Bayesian computations were often derived from basic
standard Monte Carlo principles and suitable starting identities such as the
Bridge Sampling of Meng and Wong (1996) the Harmonic Mean Estimator
of Newton and Raftery (1994) and later generalizations (Gelfand and Dey,
1994; Chen, 1994; Raftery et al., 2006) or the Ratio Importance Sampling of
Chen and Shao (1997). Other relevant recent ideas and techniques are illus-
trated Chib (1995) and his related series Chib and Jeliazkov (2001, 2005) the
Nested Sampling Skilling (2006) and also Bartolucci et al. (2006) in trans-
dimensional simulation.

2 Importance sampling and generalized harmonic

mean estimators

Let us start reviewing two available Monte Carlo solutions for the problem
of evaluating the integral quantity (1).

Importance Sampling (IS)
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In the standard Monte Carlo approach the target constant c is viewed as
an expected value with respect to some known probability density f with the
usual Importance Sampling trick as follows

c =

∫
Θ

g(θ)

f(θ)
f(θ)dθ = Ef

[
g(θ)

f(θ)

]
. (2)

The Importance Sampling (IS) is a Monte Carlo technique to estimate c
based on a sample η1, ..., ηT i.i.d. from f through the empirical mean

ĉIS =
1

T

T∑
t=1

g(ηt)

f(ηt)
, (3)

where one can choose the probability density f almost arbitrarily. In fact, in
order for the IS to work the following minimal assumptions are imposed:

IS1 g(·) needs to be integrable

IS2 g must be a probability density dominated by f , i.e. g << f

In fact, when g(θ) is an almost everywhere non negative function on Θ ⊂ Rn

and the target constant is strictly positive, c can be regarded as the normal-
izing constant which turns the non negative density g into the probability
density function

g̃(θ) =
g(θ)

c
.

This will be mostly the case in the rest of this paper.

Reciprocal Importance Sampling (RIS) or Generalized Harmonic Mean (GHM)

When g(θ) is positive almost everywhere and can be then interpreted as a
density of a �nite measure with total mass c another alternative (dual) idea
is the Reciprocal Importance Sampling (RIS) or Generalized Harmonic Mean
(GHM) strategy. It is in fact a disguised form of importance sampling based
on recasting the problem in terms of the reciprocal of the unknown total
mass c. One starts with a known quantity, say 1 without loss of generality,
evaluated as an integral of a known suitable Lebesgue integrable function
h(θ)

1 =

∫
Θ

h(θ)dθ (4)
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then divides both terms by the target c and performs a trick similar to the IS
by dividing and multiplying the integrand function h(θ) in (4) by the original
integrand function g(θ) in (1)

1

c
=

∫
Θ

h(θ)

c
dθ =

∫
Θ

h(θ)

g(θ)

g(θ)

c
dθ = Eg̃

[
h(θ)

g(θ)

]
(5)

so that, taking the reciprocal terms, one gets

c =
1

Eg̃

[(
g(θ)
h(θ)

)−1
] = Harg̃

[
g(θ)

h(θ)

]
(6)

which redisplay the target quantity c as the harmonic mean with respect to
the probability distribution g̃ heretoafter denoted with Harg̃.

In order for (5) to hold the following minimal assumptions are needed

RIS1 g(·) needs to be integrable

RIS2 h(θ) is dominated by g(θ) i.e. h << g.

The advantage of this method is that in some instances, especially in Bayesian
computations, where g represents the posterior distribution known only up
to the unknown normalizing constant, one has usually readily available a
sample θ1, ..., θT from the (normalized) probability density

g̃(θ) =
g(θ)

c

and from that sample one can estimate c through the empirical harmonic
mean as follows

ĉRIS = ĉGHM =
T∑T

t=1
h(θt)
g(θt)

=
1
T

∑T
t=1

(
g(θt)
h(θt)

)−1 . (7)

In view of its derivation we think it would be better to refer to this approach
as Reciprocal Importance Sampling (RIS) although, probably, the terminol-
ogy Generalized Harmonic Mean (GHM) is nowadays more frequent in the
literature. While the original IS estimator ĉIS in (3) is unbiased the alter-
native ĉRIS or ĉGHM in (7) is biased although asymptotically unbiased. In
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fact they are consistent since in both cases conditions for the Strong Law of
Large Numbers are met. We recall that one of the �rst particular formula-
tion of ĉGHM as a tool for Bayesian computations was made in Newton and
Raftery (1994) where g(θ) was the posterior density up to the normalizing
constant and h(θ) was taken to be the prior distribution of a Bayesian model

so that the ratio g(θ)
h(θ)

turned out to reduce to the likelihood function and the
estimator ĉGHM was the harmonic mean of the sample likelihood function
evaluations. The most general version ĉGHM was proposed in Gelfand and
Dey (1994) and also in Chen (1994) although under the di�erent terminology
ĉIWMDE (Importance Weighted Marginal Density Estimator). One annoy-
ing drawback of the original proposal of Newton and Raftery (1994), with
h(θ) being the prior density of a Bayesian model, was that the correspond-
ing ĉGHM can easily end up having very large variance and sometimes even
in�nite for simple common models. Hence we now review some fundamental
results concerning appropriate conditions for deriving a suitable asymptotic
control of of both ĉIS and ĉGHM estimators. Improved, stabilized version of
the original proposal were successively proposed see for instance Raftery et al.
(2006). We illustrate in the next section a new strategy to build up f and h
so that the corresponding ĉIS and ĉGHM estimators may have a competitive
performance and investigate their absolute and comparative e�ectiveness.

Remark 1. We stress on the fact that it is usually not explicitly recognized
that h(·) need not be a probability density. We will in fact consider such more
general context.

We will eventually highlight in Section 6 some interesting connections of
our approach with other currently available techniques to estimate normal-
izing constants.

3 Error control of IS and GHM estimators and

ideas for new implementations of GHM

In order to discuss later comparative performance of alternative IS or RIS-
GHM estimators we review some fundamental results under a standard Monte
Carlo setting. Simple standard modi�cations can be made to obtain anal-
ogous results under more general MCMC setting where either f(θ) or g̃(θ)
represents the stationary distribution. To compactify notation we will use
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the following short-hands: when ηt ∼ f we denote with

Yt =
g(ηt)

f(ηt)

such that the expected value of the random variable Yt, also denoted as
µY = E[Yt], exists and coincides with the target quantity c.

Theorem 1. Suppose η1, ..., ηT are i.i.d. according to f . The IS estimator

ĉIS =
1

T

T∑
t=1

Yt

is an unbiased and consistent estimator of c. Moreover, if σ2
Y = V ar[Yt] <∞

then
√
T (ĉIS − c)

T→∞
=⇒ N(0, σ2

Y ). (8)

It is routine to derive the asymptotic

RMSEĉIS =

√√√√E

[(
ĉIS − c
c

)2
]

=

√√√√E

[(
ĉIS
c
− 1

)2
]
≈ σY

c
√
T

and the asymptotic con�dence interval for the target quantity c namely from

1− α ≈ Pr

{
zα

2
≤
√
T

(ĉIS − c)
σY

≤ z1−α
2

}
.

On the other hand when θt ∼ g̃ we denote the ratio of densities evaluated at
θt with

Xt =
g(θt)

h(θt)

the corresponding random variable so that the mean of its reciprocal

µ 1
X

= E
[
X−1
t

]
exists and coincides with c−1 while (6) can be rewritten as

c =
1

µ 1
X

= αX . (9)
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This amounts to say that c can be regarded as the harmonic mean αX of
the transformed random variable Xt. Moreover, the ĉGHM estimator is noth-
ing but the empirical harmonic mean of Xt for which a suitable asymptotic
control can be guaranteed.

Theorem 2. Suppose θ1, ..., θT are i.i.d. according to g̃ . The generalized
harmonic mean estimator

ĉGHM =
T∑T

t=1 X
−1
t

is a consistent estimator of c. Moreover, if σ2
1
X

<∞ then

√
T

(
ĉGHM − c

c

)
T→∞
=⇒ N(0, A2) (10)

where

A =
σ 1
X

µ 1
X

. (11)

Proof - The proof immediately follows from the asymptotic behavior
of Hn the sample harmonic mean of an i.i.d sample X1, ..., Xn as recently
provided in Pakes (1999), although also previously investigated in Norris
(1940).

�

If we consider the Relative Mean Square Error of ĉGHM as follows

RMSEĉGHM =

√√√√E

[(
ĉGHM
c
− 1

)2
]

=

√√√√E

[(
ĉGHM − c

c

)2
]
,

the last statement of the above theorem allows us to derive a suitable ap-
proximate expression of RMSEĉGHM , in terms of

σ2
1
X

= V ar

[
h(θt)

g(θt)

]
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(provided it exists �nite) using (9), (10) and (11), namely

RMSEĉGHM ≈ RMSEĉGHM ,δ =
A√
T

= c
σ 1
X√
T

=
c√
T

√
V ar

[
h(θt)

g(θt)

]
. (12)

Notice that if we consider an arbitrary rescaling of the g density this does
not a�ect the evaluation of the corresponding estimator in terms of RMSE.

In order to get a consistent estimator of the last approximated expression
of the RMSE it su�ces to replace c = 1

µ 1
X

and σ 1
X
with their sample coun-

terparts namely, respectively, ĉGHM and the sample variance of X−1
t denoted

as s2
1
X

. These replacements yield

R̂MSE ĉGHM ,δ =
1√
T
s 1
X
ĉGHM

Finally, using the CLT statement of Theorem 2 we can derive an asymptotic
con�dence interval for c from the following

1− α ≈ Pr

{
A√
T
zα

2
≤ ĉGHM − c

c
≤ A√

T
z1−α

2

}
= Pr

{
ĉGHM

1 + A√
T
z1−α

2

≤ c ≤ ĉGHM

1 + A√
T
zα

2

}

≈ Pr

 ĉGHM

1 +
s 1
X
ĉGHM
√
T

z1−α
2

≤ c ≤ ĉGHM

1 +
s 1
X
ĉGHM
√
T

zα
2


= Pr

 1

1
ĉGHM

+
s 1
X√
T
z1−α

2

≤ c ≤ 1

1
ĉGHM

+
s 1
X
ĉGHM
√
T

zα
2


where zα is the α-quantile of a standard normal distribution.

In the next two sections we investigate theoretical properties and practical
e�ectiveness of a particular version of the ĉGHM estimator obtained with a
particular choice of h(·) automatically constructed using only a sample from
g̃ and the ability to compute of g(·).

In fact, looking at (12) one can immediately argue that an optimal choice
of h which would lead to a perfect estimator of c by means ĉGHM would be
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h ∝ g which, unfortunately, in view of the starting constraint (4), requires
that we should know c in advance.

Theoretically one could look for an ε-optimal solution of the following
variational problem

inf
{h(·):

R
h(θ)dθ=1}

V ar

[
h(θ)

g(θ)

]
(13)

whose optimal solution would certainly give a zero variance estimator achiev-
able in the limit, as already argued above, at the una�ordable price of know-
ing c in advance.

However, one can think of constructively de�ning a function h which
exactly satis�es the constraint (4) and only approximately produce h ∝ g
without requiring to know c in advance. In fact, although we derived our
idea from a slightly di�erent perspective we eventually realized that it �tted
into the ĉGHM framework.

Our original idea was to build up perturbations of g̃ without knowing
the total mass of g perturbing g into gP so that the total mass of gP has
some known functional relation to that of g. For instance one can in�ate g
parametrically so that gPk is such that∫

gPk(θ)dθ = c+ k (14)

where k is a known constant which can be arbitrarily �xed possibly producing
(for small values of k) a perturbed gP which closely resembles the original c.

When this is possible one can get the desired h satisfying (4) as follows

hk(θ) =
gPk(θ)− g(θ)

k
(15)

In fact, given a completely known density g(θ), whose unknown total mass
c must be evaluated, there exist several ways to obtain another completely
known density such as gPk(θ). One naive idea would be that one can just
add a known probability density p(θ) multiplied by a known constant factor
k so that

gPk(θ) = g(θ) + k p(θ). (16)

However, this would lead to a trivial solution which gives back h(θ) = p(θ)
which does not depend on k at all.
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An alternative e�ective idea when Θ = R can be the Hyperplane In�ation
method of Petris and Tardella (2003) where the perturbed density gPk can
be constructed as follows:

gPk(θ) =


g(θ + rk) θ < −rk
g(0) −rk < θ < rk

g(θ − rk) θ < rk

where

2rk =
k

g(0)

represents the length of the interval centered (w.l.o.g.) around the origin
which allows to have a new density gPk with the same total mass of g plus
the �xed quantity k which can be easily proved since the density gPk , out-
side the central interval (−dk, dk), is nothing but a horizontal shift of the
original g. In fact, in the general case when Θ = Rn a similar trick can be
implemented relying on the following in�ating mapping which preserves the
Lebesgue measure: for a �xed k > 0 the function ψn(·; r) is de�ned for any
θ ∈ Rn, θ 6= 0, by

ψn(θ; r) =
θ

|θ|
(
|θ|n + rn

)1/n

where B
(n)
r = {θ ∈ Rn : |θ| ≤ r} is the n-dimensional closed ball of radius r,

centered at the origin. Since ψn(θ; r) preserves the Lebesgue measure λ(·), it
can been shown (see Appendix A) that the following density function

gPk(θ) =

{
g(0) if θ ∈ B(n)

rk ,

g(ψ−1
n (θ; rk)) if θ 6∈ B(n)

rk

(17)

has a total mass given by ∫
Θ

gPk(θ) dθ = c+ k

where

k = g(0) · λ(B(n)
rk

). (18)

In the above sense we can think of gPk as a parametrically in�ated or per-
turbed version of the original target density.
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With this perturbed gPk we can de�ne the function hk(θ) as in (15) so
that (4) holds and one can consider the following GHM estimator as in (7)

ĉGHM =
1

1
T

∑T
t=1

[(
k g(θt)

gPk (θt)−g(θt)

)−1
] (19)

Hence one can abandon the variational problem (20) on a function space
and try to tackle a simpler unidimensional sub-problem

inf
{hk(·)=

gPk
−g
k

,k>0}
V ar

[
hk(θ)

g(θ)

]
. (20)

We quickly mention that there is also the possibility of exploiting the per-
turbed density gPk as sampling density so that a simple suitable modi�cation
to the straight IS can be used to estimate c using an i.i.d. sample from the
normalized distribution g̃Pk . Starting from the following identity

c =
k Eg̃I(θ)

[
g(θ)
gPk (θ)

]
1− Eg̃I(θ)

[
g(θ)
gPk (θ)

] . (21)

simulating η1, ..., ηT i.i.d. from g̃I , a consistent estimate of the unknown
quantity namely can be computed as follows

ĉIDS =

k
T

∑T
t=1

[
g(ηt)
gPk (ηt)

]
1− 1

T

∑T
t=1

[
g(ηt)
gPk (ηt)

] (22)

and we call it In�ated Density Sampling estimate just to highlight that it
is based on a random sample from a di�erent sampling distribution, namely
the in�ated gPk .

Let us compare the two alternative identities (6) and (21). The second
identity on one hand has the advantage that the ratio appearing inside the
expectation can be suitably controlled so that the ratio can bounded from
above by 1 and hence the resulting estimator will be guaranteed (see Sec-
tion 2) to have always �nite variance. Also, if the in�ated mass k is relatively
small the corresponding in�ated density gPk may resemble very closely (see
Figure 4.1) the original g which is a nice prerequisite for a well behaved
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Monte Carlo error. On the other hand, it is often the case, for instance in
Bayesian computation, that a sample from g is readily available while obtain-
ing a sample from gPk could require additional computational e�orts. For
this reason we will not investigate much further the properties of ĉIDS in this
paper.

4 Investigation of a new class of GHM estima-

tors with HI perturbation

4.1 Theoretical investigation in one-dimensional prob-

lems

We now focus on implementing the new class of estimators (7) with gPk(θ)
constructed via (15) with (14) implemented with the Hyperplane In�ation
(HI) idea originally developed in (Petris and Tardella, 2003).

We �rst investigate theoretically two simple examples with Normal and

Cauchy densities to show how the behavior of the ratio
gPk (θ)

g(θ)
is suitably

controlled and conditions for Theorem 2 are guaranteed. Moreover, practi-
cal implementation turned out particularly encouraging for supporting the
method based on identity (21) and HI.

Example. Let us consider the very basic case of a univariate (n = 1) stan-
dard normal density up to a multiplicative constant

g(θ) = exp

{
−θ

2

2

}
∝ fN(0,1)(θ).

In this case, in�ating with a constant bounded density over the interval
(−dk, dk) around the mode 0 one gets

gPk(θ) =

{
1 |θ| ≤ dk

exp
{
−1

2
(|θ| − dk)2

}
|θ| > dk

g(θ) = exp

{
−θ

2

2

}
∝ fN(0,1)(θ)

so that the in�ated density has the same total mass corresponding to g plus
a known quantity namely k = 2dk. Unfortunately, in this case, we do not
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end up with a bounded ratio since, for θ > dk

gPk(θ)

g(θ)
= exp

{
−1

2
[(|θ| − dk)2 − θ2]

}
= exp

{
1

2
[−θ2 − d2

k + 2|θ|dk + θ2]

}
= exp

{
−d

2
k

2
+ |θ|dk

}
which is increasing with |θ| and diverging at an exponential rate as |θ| → +∞.
Yet we end up achieving a positive result for our �rst proposed procedure.
In fact, we eventually aim at having a �nite variance of the estimator ĉGHM
and this is actually true even if in this case the ratio is unbounded. In fact,
since

RMSE [ĉGHM ] =

√
V arg̃(θ)

[
gPk(θ)

g(θ)

]
<∞⇐⇒ Eg̃(θ)

[(
gPk(θ)

g(θ)

)2
]
<∞(23)

we have that the second moment of the ratio can be written as

Eg̃(θ)

[(
gPk(θ)

g(θ)

)2
]

=
1√
2π

[∫
{|θ|<=dk}

1

g(θ)
dθ +

∫
{|θ|>dk}

g(|θ| − dk)2

g(θ)
dθ

]
(24)

=
1√
2π

[∫
{|θ|<=dk}

exp
{
θ2
}
dθ+ (25)

+

∫
{|θ|>dk}

exp

{
−θ

2

2
− d2

k + 2|θ|d
}
dθ

]
(26)

where the �rst integral is �nite since the integrand function is continuous over
a bounded closed interval. However, one must immediately realize that the
choice of k and hence dk will a�ect the performance of the ĉGHM estimator
since the ratio g2

Pk
/g yields very large values for very large dk when a constant

value of gPk is divided by a very little quantity corresponding to the tail of
the Normal density (see Figure 4.1) .

In fact one can also show that in some particular cases such as the Cauchy
density the original ratio gPk(θ)/g(θ) itself is actually bounded.

Example. Let

g(θ) =
1

1 + θ2
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Figure 1: Ratio g2
Pk

(θ)/g(θ) for di�erent choices of k in the Normal case

then, in�ating again with a constant bounded density over the interval (−dk, dk)
around the mode 0, one gets

gPk(θ) ∝

{
1 |θ| ≤ dk

1
1+(|θ|−dk)2

|θ| > dk

and hence for |θ| > c

gPk(θ)

g(θ)
=

1 + (|θ| − dk)2

1 + θ2

which is in fact bounded (see Figure 4.1).

In fact, in the univariate case, one can derive some useful general su�cient
conditions as in the following result.

Lemma 1. Suppose g(θ) a continuous positive log-Lipschitz density of a
�nite measure on R and gPk(θ) is the transformed density obtained through
the in�ating transformation as in Petris and Tardella (2003). Then

V arg̃(θ)

[
gPk(θ)

g(θ)

]
<∞ (27)
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Figure 2: Ratio gPk(θ)/g(θ) for di�erent choices of k in the Cauchy case

Proof - It su�ces to show that

Eg̃(θ)

[(
gPk(θ)

g(θ)

)2
]
<∞ (28)

which basically depends on the tail behavior of the ratio g(|θ|−d)
g(θ)

as |θ| → ∞.

In particular, if g(θ) is log-Lipschitz then for su�ciently large θ

|log g(θ − d)− log g(θ)| ≤ Cd

hence ∫ ∞
θ0

(
g(θ − d)

g(θ)

)2

g(θ)dθ ≤
∫ ∞
θ0

e2Cdg̃(θ)dθ ≤ Cd <∞

�
For instance the log-Lipschitz condition is met for the Laplace distribu-

tion. In cases where log-Lipschitz condition is not met as in the Gaussian
case one can derive an alternative su�cient condition.

Lemma 2. Suppose g(θ) a continuous positive log-concave density of a �nite
measure on R and gPk(θ) is the transformed density obtained through the
in�ating transformation as in Petris and Tardella (2003). Suppose that

Eg̃

[
e2d d

dθ
log g(θ)

]
<∞
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then

V arg̃(θ)

[
gPk(θ)

g(θ)

]
<∞ (29)

Proof - It su�ces to show that

Eg̃(θ)

[(
gPk(θ)

g(θ)

)2
]
<∞ (30)

which basically depends on the tail behavior of the ratios g(|θ|−d)2

g(θ)
as |θ| → ∞.

In particular, since log-concave densities are strongly unimodal and certainly
decreasing for su�ciently large values θ > θ0 w.l.o.g. consider the behavior
of ∫ ∞

θ0

g(θ − d)2

g(θ)
dθ

Since g is eventually decreasing and from log-concavity, for any α ∈ (0, 1)

log g(θ − αd) = log g((1− α)θ + α(θ − d)) ≥ (1− α) log g(θ) + α log g(θ − d)

which for α = 1
k
with arbitrary k > 0 gives

g

(
θ − d

k

)
≥ g(θ)

k−1
k · g(θ − d)

1
k

or, equivalently,

g
(
θ − d

k

)
g(θ)

≥ g(θ)
k−1
k
−1 · g(θ − d)

1
k

that is [
g(θ − d

k
)

g(θ)

]2k

≥ g(θ)

[
g(θ − d)

g(θ)

]2

Then, taking the lhs to the limit with k →∞ one gets[
g(θ − d)

g(θ)

]2

≤ e−(2d) d
dθ

log g(θ)

which establish our claim.
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�
As an aside we just mention that the advantage of ĉIDS derived from the

alternative identity (21) is that the integrand function obtained as a ratio
could be more easily bounded above from 1 and hence the ensuing estima-
tor can be guaranteed to have �nite variance with no restricting assumption
whatsoever. This is immediate to verify whenever the in�ated gPk(θ) is con-
structed by summing g(θ) with a density function h(θ) which possesses known
total mass k. If the in�ated gPk(θ) is constructed via Hyperplane In�ation
method of Petris and Tardella (2003) the ratio can be similarly bounded
when g is unimodal simply recentering the the posterior mode around 0.

Another advantage of the second method derived from the alternative
identity (21) with the in�ated gPk(θ) constructed via the Hyperplane In�a-
tion idea of Petris and Tardella (2003) is that one can exploit regeneration
techniques to estimate the MC error more accurately when an MCMC sim-
ulating scheme is used for η1, ..., ηT .

4.2 Theoretical and practical implementation with para-

metric tuning of the perturbation

We investigate in more depth the behavior of the ĉGHM estimator imple-
mented with the HI perturbation as a function of k. On one hand it is easy
to understand that as k → 0 the in�ated density tends to approximate the
original density in such a way that their ratio becomes approximately one.
This implies that the variance of the empirical mean of the ratio of densities

Wt = g(θt)
gPk (θt)

namely µ̂W = k
T

∑T
t=1

[
g(θt)
gPk (θt)

]
becomes as small as possible.

However, the same empirical mean is an unbiased estimator of µW = c+k
c

which, in turn, approaches 1 as k → 0 so that very little deviations from 1
at the denominator of

ĉGHM =
k

µ̂W − 1

might have a very large impact on the variability of the whole ratio even for
a small numerator.

To understand this trade-o� better one may focus on the last expression
of the approximate relative mean square error of ĉGHM obtained in (12) which
can be now written as

RMSEĉGHM ≈
c

k

√
V ar

[
gPk(θt)

g(θt)

]
.
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Figure 3: Cauchy case: comparison of di�erent evaluations of the Relative
Mean Square Error of ĉGHM as a function of k
. The Monte Carlo approximation is obtained with sample size T = 10000

The approximate expression of the RMSE highlights explicitly which is the

trade-o� for the optimal choice of k. If on one hand V ar
[
gPk (θt)

g(θt)

]
would

favor as little values of k as possible on the other hand 1
k
acts in the opposite

direction.
We now see how one can investigate simple cases such as the former

Cauchy example and get an explicit expression for the approximate RMSE
which would yield a better �rst understanding of the real performance of a
possible general approximate optimal calibration of k to be used in practical
applications.

π

√
kπ

12
+
π2

8
− 1 (C)

In fact, from the approximation in (C) we should choose k as close as pos-
sible to 0. We cannot of course choose k exactly equal to 0 for implementing
ĉGHM(k) because this would yield an indeterminate form in (6).

However, the following practical approach can be carried out: one can use
the same sample to get di�erent ĉGHM(k) approximations and then choose
the optimal k∗ for which RMSEĉGHM (k∗) is minimum.

We have veri�ed in this Cauchy case (see Figure 4.2) that RMSEĉGHM (k)

as evaluated either by our estimate R̂MSE
MC

ĉGHM
(k) or by its analytic asymp-

totic approximation RMSEĉGHM ,δ(k) in (C) and or by the MC estimate
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k RMSEĉGHM ,δ(k) R̂MSE ĉGHM ,δ(k) R̂MSE

10−4 0.0052 0.0049 0.0048
1 0.0072 0.0071 0.0070
2 0.0086 0.0088 0.0087
3 0.0099 0.0102 0.0101
4 0.0113 0.0114 0.0113
5 0.0123 0.0125 0.0124
6 0.0131 0.0135 0.0134
7 0.0137 0.0144 0.0143
8 0.0142 0.0152 0.0152
9 0.0149 0.0160 0.0161
10 0.0163 0.0167 0.0169

Table 1: Cauchy example where g̃ is Cauchy(0, 1) and c = π. Comparison
for di�erent values of k of RMSE approximation (theoretical and empirical)
of formula (12), actual RMSE evaluated by 100 Monte Carlo replications

using the true unknown value of c = π. Our R̂MSE ĉGHM ,δ(k) estimate is
obtained with sample size T = 10000.

R̂MSE of the exact RMSE estimated by 100 Monte Carlo replications of its
original de�nition using the known true value of c are pretty close and the
optimal

RMSE(k∗) = inf
k>0

RMSE(k) ≈ 1√
10000

√
π2

8
− 1 = 0.004834

is actually obtained (and approximately achieved) for very little values of k.

In fact, the behavior of R̂MSEδ has been veri�ed to be quite stable within
the range (10−2, 10−13) and starts showing clear signs of numerical instability
only for k < 10−13 (see Table 4.2).

4.3 Performance in high-dimensional problems

We decided to check whether the proposed approach could be successfully
implemented in very high-dimensional integration. In particular we have used
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as a benchmark the normalizing constant of a 100-dimensional multivariate
normal with independent component was used.

The following table was obtained for di�erent values of the in�ated mass
k. Surprisingly the optimal calibration of k led to a very large optimal
k∗ value. Despite that, we observe that a pretty stable behavior is shown
within a reasonably wide range of so large values of k. Also, notice that the
corresponding huge k values correspond to radii dk in the range of 5 up to
10. Overall the simulation experiment con�rms that the new method can
perform well even in very high dimension.

klist chat rmse.chat chat.low chat.upp asy.sd size

105 0.27 1.00 0.07 −0.13 316.23 100000.00

106 0.37 0.52 0.14 −0.65 165.28 100000.00

107 0.52 0.40 0.24 −2.80 125.19 100000.00

108 1.05 0.32 0.54 26.10 101.16 100000.00

109 1.04 0.20 0.65 2.61 63.48 100000.00

1010 0.90 0.12 0.66 1.41 38.10 100000.00

1011 1.07 0.08 0.85 1.42 26.28 100000.00

1012 0.93 0.05 0.80 1.11 16.96 100000.00

1013 1.04 0.04 0.93 1.17 12.05 100000.00

1014 0.97 0.03 0.90 1.05 8.52 100000.00

1015 0.97 0.02 0.92 1.04 6.41 100000.00

1016 1.03 0.02 0.98 1.08 5.10 100000.00

1017 1.01 0.01 0.98 1.05 4.08 100000.00

1018 0.99 0.01 0.96 1.03 3.42 100000.00

1019 1.01 0.01 0.98 1.04 3.07 100000.00

1020 1.01 0.01 0.99 1.04 2.87 100000.00

1021 1.01 0.01 0.98 1.04 2.83 100000.00

1022 0.98 0.01 0.95 1.01 2.94 100000.00

1023 1.00 0.01 0.97 1.03 3.29 100000.00

1024 1.00 0.01 0.97 1.04 3.94 100000.00

1025 1.01 0.02 0.97 1.06 4.98 100000.00

1026 1.02 0.02 0.96 1.09 6.76 100000.00

1027 1.03 0.03 0.94 1.14 9.81 100000.00

1028 0.98 0.05 0.86 1.15 14.88 100000.00

1029 1.01 0.08 0.81 1.32 24.86 100000.00

1030 1.02 0.13 0.74 1.66 40.63 100000.00
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5 Real data applications

In this section we have applied our approach to two literature examples which
are used as illustrative applications in MCMCpack a contribute R package for
Bayesian computation. The �rst one deals with the birth weight data in
Hosmer and Lemeshow (1989) where an linear model is considered to verify
the statistical relevance of factors like mother's age, race, weight at last men-
strual period and smoking habits in determining birth weight of children.
The second one is a data set from Ornstein (1976) where negative bino-
mial regression analysis is considered to explain the number of interlocking
director and executive positions shared with other major �rms of di�erent
countries.

The MCMCpack readily provides two alternative methods to evaluate the
marginal likelihood with either the Laplace method or the original Chib
method (Chib, 1995) in the �rst case where Gibbs Sampling is implemented
to simulate a MCMC sample from the posterior distribution while there is
no method readily available in the package for the latter case where an all-
purpose Metropolis Hastings technique is used to sample from the posterior.

5.1 Birth weight data

With the help of the MCMCregress function one immediately gets two poste-
rior samples of size 50000 from two alternative models

model1 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke + ht, data=birthwt,

b0=c(2700, 0, 0, -500, -500, -500, -500),

B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5,1.6e-5), c0=10, d0=4500000,

marginal.likelihood="Chib95", mcmc=50000)

model2 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke,

data=birthwt,

b0=c(2700, 0, 0, -500, -500, -500),

B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5),

c0=10, d0=4500000,

marginal.likelihood="Chib95", mcmc=50000)

hence one can get an approximation of the Bayes Factor with the function
BayesFactor as follows

> BF = BayesFactor(model1, model2)

> print(BF)

The matrix of Bayes Factors is:

posterior1 posterior2
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posterior1 1.000 14.1

posterior2 0.071 1.0

The matrix of the natural log Bayes Factors is:

posterior1 posterior2

posterior1 0.00 2.64

posterior2 -2.64 0.00

posterior1 :

call =

MCMCregress(formula = bwt ~ age + lwt + as.factor(race) + smoke +

ht, data = birthwt, mcmc = 50000, b0 = bb0, B0 = BB0, c0 = cc0,

d0 = dd0, marginal.likelihood = "Chib95")

log marginal likelihood = -1505.270

posterior2 :

call =

MCMCregress(formula = bwt ~ age + lwt + as.factor(race) + smoke,

data = birthwt, mcmc = 50000, b0 = bb0, B0 = BB0, c0 = cc0,

d0 = dd0, marginal.likelihood = "Chib95")

log marginal likelihood = -1507.915

We then use our method to see how it behaves in this real data context.
A simple pre-processing of the MCMC sample was carried out so that the
origin coincides with the empirical posterior mode and the correlation matrix
was standardized. We have then taken this into account in the logposterior
evaluation with the further multiplication on the logposterior density for an
appropriate constant so that the rescaled logposterior is equal to 0 at the
origin. This preprocessing can be easily performed under any circumstances
and improve the chances to get a better shaped starting density g with an
optimal additional constant k∗ (and corresponding radius of hyperspherical
opening dk) within reasonably computable ranges. The computational cost
of this reshaping is quite moderate. From the posterior sample in model1

and model2 we get the �gures in Table 5.1 and Table 5.1 from which one can
derive a Bayes factor in favor of the largest model of 14.07 which is quite close
to the one obtained with the standard methods implemented in MCMCpack.
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klist log.chat rmse.chat log.chat.low log.chat.upp asy.sd size

1 1e-05 −1505.05 0.04 −1505.16 −1504.91 9.20 50000.00

2 1e-04 −1505.05 0.04 −1505.16 −1504.91 9.20 50000.00

3 1e-03 −1505.05 0.04 −1505.16 −1504.91 9.22 50000.00

4 1e-02 −1505.05 0.04 −1505.17 −1504.91 9.40 50000.00

5 1e-01 −1505.13 0.10 −1505.39 −1504.78 22.15 50000.00

6 1e+00 −1505.21 0.06 −1505.38 −1505.01 13.60 50000.00

7 1e+01 −1505.25 0.04 −1505.36 −1505.14 7.94 50000.00

8 1e+02 −1505.27 0.02 −1505.33 −1505.21 4.47 50000.00

9 1e+03 −1505.28 0.01 −1505.31 −1505.24 2.53 50000.00

10 1e+04 −1505.27 0.01 −1505.29 −1505.25 1.81 50000.00

11 1e+05 −1505.29 0.01 −1505.33 −1505.25 2.64 50000.00

klist log.chat rmse.chat log.chat.low log.chat.upp asy.sd size

1 1e-05 −1507.74 0.04 −1507.84 −1507.63 7.89 50000.00

2 1e-04 −1507.74 0.04 −1507.84 −1507.63 7.89 50000.00

3 1e-03 −1507.74 0.04 −1507.84 −1507.63 7.93 50000.00

4 1e-02 −1507.75 0.04 −1507.86 −1507.63 8.42 50000.00

5 1e-01 −1507.84 0.07 −1508.03 −1507.61 15.43 50000.00

6 1e+00 −1507.83 0.04 −1507.93 −1507.72 7.84 50000.00

7 1e+01 −1507.89 0.02 −1507.95 −1507.83 4.73 50000.00

8 1e+02 −1507.91 0.01 −1507.95 −1507.88 2.70 50000.00

9 1e+03 −1507.93 0.01 −1507.95 −1507.91 1.62 50000.00

10 1e+04 −1507.91 0.01 −1507.93 −1507.89 1.51 50000.00

11 1e+05 −1507.94 0.02 −1508.00 −1507.86 5.13 50000.00

5.2 Ornstein data

The data comes from an investigation (Hosmer and Lemeshow, 1989) on the
boards and executives of the largest Canadian corporations and one objective
is to explore factors a�ecting board interlocks. We can then �t a Bayesian
negative binomial regression to the Ornstein data explaining the count of
interlocking director and executive positions shared with other major �rms.
Within the MCMCpack one can easily derive with very few programming an
MCMC sample with the help of the MCMCmetrop1R() function which im-
plements a random walk Metropolis algorithm to sample from an arbitrary
user-de�ned log-posterior density. We can use this as an example where, in
the absence of available full-conditionals and not built-in resources to com-
pute marginal likelihood and Bayes factors, one can exploit the same user-
de�ned log-posterior density to implement our approach. In this case we use
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alternative design matrices to determine the relevance of the sector factor
compared to the nation factor we get the following results which suggest to
use the only sector factor as covariate. This is another example where our
approach can be successfully implemented in a moderately large dimensional
(up to 14 dimension) data set.

6 Connections with some more recent solutions

This section is devoted to explain how the new strategy can be related to
some of the most popular recent techniques used in the context of estimating
normalizing constants. As already highlighted earlier our in�ated density
ratio estimator ĉGHM is just a particular instance of the generalized harmonic
mean estimator originally developed in Newton and Raftery (1994). We will
illustrate now how Bridge Sampling (BS) and Path Sampling can be related
to our proposal.
Bridge Sampling (BS)

Although in their review paper Gelman and Meng (1998) claimed that in
some particular case the ĉGHM estimator can be seen as a particular case of
Bridge sampling one can rather take the opposite perspective and argue that
the BS estimator is a particular instance of a ratio of two GHM estimators.

In fact, if we set

c0 =

∫
g0(θ)dθ

g̃0(θ) =
g0(θ)

c0

c1 =

∫
g1(θ)dθ

g̃1(θ) =
g1(θ)

c1

and use a bridge function α(θ) satisfying∫
α(θ)g0(θ)g1(θ)dθ <∞

we get

r =
c1

c0

=

∫
g1(θ)α(θ)g̃0(θ)dθ∫
g0(θ)α(θ)g̃1(θ)dθ
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so that one can estimate the ratio c1/c0 of the two normalizing constants as
follows

r̂BSc1
c0

=
1
N0

∑N0

i=1 g1(θ0,i)α(θ0,i)

1
N1

∑N1

j=1 g0(θ1,j)α(θ1,j)

with a suitable number N0 of simulations θ0,i from g̃0 and number N1 of
simulations θ1,j from g̃1. Hence, to see how BS can be seen as a particular
case of GHM we can use

h(θ) = α(θ)g0(θ)g1(θ)

and combine two GHM estimators as in (7) with g1 and g0 respectively instead
of g then the ratio

ĉGHM,1

ĉGHM,0

is nothing but the BS estimator r̂BS. Notice that in both ĉGHM,1 and ĉGHM,0

we are using the same function h satisfying (4) which is in fact unnecessary.
With a di�erent choice of h1 and h0 one could get some additional advantage
in terms of e�ciency of the resulting ratio estimator.

Notice also that as a matter of fact for the BS as well as for the GHM
strategy the starting point is the existence of a �nite integral for the h func-
tion although it need not be a known quantity as in (4) for the same �nite
quantity is used both at the numerator and at the denominator and hence it
cancels out.

Path Sampling (PS)
In this section we will establish a formal rigorous limit connection between

the PS estimator and our ĉGHM .
In fact, if we regard the gPk(θ) = g(θ, k) in (17) as an explicit function of

k and θ and notice that g(θ, 0) = g(θ) and consider the limit of the function
appearing in (15) when k → 0 we discover that the resulting expression

∂

∂k
g(θ, k)

∣∣∣∣
k=0

= lim
k→0

hk(θ) = lim
k→0

g(θ, k)− g(θ, 0)

k

is nothing but the partial derivative of g(θ, k) evaluated at k = 0. Hence,
taking the limit expression of (6) we get

c = Harg̃

[
∂
∂k
g(θ, k)

∣∣
k=0

g(θ, 0)

]
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or, equivalently

Eg̃

[
∂

∂k
log g(θ, k)

∣∣∣∣
k=0

]
=

1

c

which is in close connection to the corresponding PS identity for which

log

(
c+ k

c

)
= E˜̃g(θ,λ)

[
∂

∂λ
log g(θ, λ)

]
where the expectation is rather de�ned with respect to the joint distribution
of (θ, λ)

˜̃g(θ, λ) ∝ g(θ, λ)π(λ)

obtained normalizing the product of the original target and a uniform marginal
density π(·) for λ ∈ [0, k]. In fact, taking the limit

lim
k→0

log
(
c+k
c

)
k

= lim
k→0

log(c+ k)− log c

k
= lim

k→0

E˜̃g(θ,λ)

[
∂
∂λ

log g(θ, λ)
]

k
=

1

c

we can get our ĉGHM as a limit case of the PS estimator.
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