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Abstract

We present some new results that extend the geometric approach to trans-
dimensional Markov chain Monte Carlo simulations originally proposed in
Petris and Tardella (2003a). These provide a black-box method to generate
a sample from a Markov chain with a prescribed stationary distribution on
a disjoint union of Euclidean spaces not necessarily of the same dimension.
The only requirement is that the support spaces of different dimensions have
to be locally nested and the corresponding densities of the target distribu-
tion have to be known up to a normalizing constant. Empirical evidence of
effectiveness of the proposed method is provided by a controlled experiment
of variable selection in a general regression context as well as by an original
approach to mixture of normal models.
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1 Introduction

It is by now widely acknowledged in many applied fields that uncertainty
about the fitted model has to be accounted for in any statistical data analy-
sis. The books by Burnham and Anderson (2002) and Koop (2003) provide
two examples, in biology and econometrics, of the increasing interest in mul-
timodel inference. The first is entirely devoted to the issues of model selection
and model averaging, while the latter has a full chapter on model averaging.
Within the Bayesian approach, model uncertainty can be quantified through
posterior model probabilities which can be used both for model/variable se-
lection and for improving predictions of future observations by weighing and
combining model-specific predictions. Averaging predictions from different
models has been shown in many practical cases (Chatfield, 1995) to pro-
vide predictions with better statistical properties. Given the importance of
Bayesian multimodel inference, it is very important to devise simple tech-
niques and easy-to-use algorithms to obtain posterior inferences in a multi-
model setting. The present paper is intended to be a contribution in this
direction.

Reversible Jump (RJ) (Green, 1995), which currently seems to be the
transdimensional sampler most often used in applied work, although very
flexible, often requires careful specification of jump proposals. A few methods
to assist the user in finding efficient jump proposals have recently become
available (see for example Brooks, Giudici and Roberts, 2003; Ehlers and
Brooks, 2003; Green, 2003), but they are still of limited use. In the paper we
suggest a way of reducing the problem of transdimensional sampling to one of
ordinary, fixed-dimensional, Markov chain Monte Carlo (MCMC), which is
in principle simpler and for which automatic methods exist. Compared with
the similar-in-spirit product-space approach proposed in Carlin and Chib
(1995), our method is more efficient in terms of keeping as low as possible the
dimensions of the simulation spaces and does not require the specification of
well-tuned pseudo-priors. For a current extensive review of transdimensional
Markov chain methods, see Sisson (2005).

Based on a simple geometric intuition Petris and Tardella (2003a) intro-
duced a new method to facilitate sampling from a distribution whose support
is comprised of a set of nested hyperplanes. This is the case, for example,
of the posterior distribution of the parameters of a polynomial regression
model E(y|x) = β0 + β1x + β2x

2 + . . . + βpx
p, when the maximum order is
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set to p but there is a positive probability that the true regression is in fact
polynomial of order k, strictly less than p. In the simplest setting of a dis-
tribution supported just on two hyperplanes – the full Euclidean space and
one proper hyperplane – the basic tool developed by the authors is a simple
transformation of the original distribution viewed as a mixture of two mu-
tually singular components into a single absolutely continuous distribution
supported on the largest space. In the general case of several nested hyper-
planes, the same goal, constructing a continuous distribution which is in some
sense equivalent to the original one, is achieved through an iterative use of
the basic tool for two supporting hyperplanes. One of the advantages is that
in general understanding and approximating a sample from an absolutely
continuous distribution in a (Markov Chain) Monte Carlo technique is much
simpler than understanding and approximating the original distribution, sup-
ported by nested hyperplanes. In fact the new approach has been already
successfully tested in many frequently used nested settings such as regenera-
tive MCMC (Petris and Tardella, 2003a; Petris and Tardella, 2003b), model
selection/ averaging for nested linear models (Petris and Tardella, 2003a),
autoregressive models (Petris and Tardella, 2001). With the exception of
regenerative MCMC, the target distribution is always a posterior distribu-
tion supported by a set of nested models, as in the polynomial regression
example mentioned at the beginning of this section. In fact in all the above-
mentioned applications the target distribution is supported by a set of nested
hyperplanes and although the class of nested models is large and contains
many useful models, being able to treat the nested case only is definitely a
limitation of the approach. In the present paper we show how the geometric
approach can be exploited to deal also with the much more general trans-
dimensional MCMC case when the different models are only locally nested.
(A precise definition of locally nested is given in Section 3.)

In Section 2 after briefly reviewing the results of Petris and Tardella
(2003a) we introduce some extensions that will be needed in Section 3, where
we prove the main theoretical result needed to apply the new approach to
transdimensional MCMC in the general locally nested case. An application
to variable selection for linear regression models is included in Section 4 Sec-
tion 5 contains a practical example where we show how to apply the proposed
approach to a Bayesian analysis of a mixture model with an unknown number
of components. Section 6 concludes the paper.
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2 Hyperplane Inflation: the nested case

We briefly recall the main results of Petris and Tardella (2003a). The basic
idea is more easily grasped when the target distribution is supported by only
two hyperplanes, both improper. Let ηk and δk denote two measures in Rk

corresponding to the Lebesgue measure and the Dirac measure concentrated
at the origin and consider the target distribution (possibly not normalized)

µ(dx) = f0(x)ηk(dx) + fkδk(dx)

which is a mixture distribution of two components, absolutely continuous
the former and degenerate on the origin the latter. In order to transform
µ into a single absolutely continuous distribution, one can move the density
f0(x) of the continuous component away from the origin using the one-to-one
transformation

x 7−→ x (‖x‖k + rk)1/k ‖x‖−1, (1)

where r is a parameter to be appropriately set. With this transformation
there is no density defined in a region corresponding to ball of radius r
around the origin. Hence one can obtain an auxiliary density by extending
the definition of the transformed density with a constant density over that
ball, more precisely, spreading uniformly the mass fk on the ball. If z is a
draw from the continuous distribution corresponding to this auxiliary density,
it is easy to transform z into a draw x from the original target distribution,
essentially by undoing (1). In fact, if ‖z‖ > r, then the inverse of (1) is

z 7−→ x = z (‖z‖k − rk)1/k ‖z‖−1; (2)

while, if ‖z‖ < r, the corresponding x in the original uninflated space is the
origin. The boundary region {z : ‖z‖ = r} is clearly irrelevant since it has
probability zero.

The map (1) suggested the name Hyperplane Inflation (HI), since it sim-
ply inflates the origin into a ball. The fact that (1) preserves Lebesgue
measure avoids the need for computing complicated Jacobians.

The case of distribution with two components, one of which supported
by a proper hyperplane, can be treated similarly: essentially by applying
the inflation and deflation maps to some of the coordinates only, in an ap-
propriate coordinate system. To obtain the general case with k > 2 nested
hyperplanes one can iteratively combine the continuous component of the
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distribution with a degenerate one, transforming the two into a new contin-
uous component until there are no degenerate components left (for details,
see Petris and Tardella, 2003a). All the described procedures can be carried
out in an automatic way starting from the (possibly not normalized) den-
sities of all the degenerate components. The R package HI, developed by
the authors and available from CRAN2, provides functions that, given the
original degenerate densities, evaluate the density of the auxiliary absolutely
continuous distribution and the function that transform a draw from it into
a draw from the original distribution.

We now give a result that generalizes Theorem 1 and Theorem 2 of Petris
and Tardella (2003a) so that one can realize a transdimensional Markov chain
sampler working for general locally nested subspaces by using the basic idea
of reformulating a two component mixture distribution into a single distrib-
ution.

To formalize the setting described above, we have a target distribution µ
on a space (X,SX) (representing the original mixture defined in terms of µ),
a distribution τ on another space (Z,SZ) (corresponding to the continuous
distribution on the inflated space), and a measurable map φ : Z → X such
that µ = τφ−1. The running assumption is that drawing a sample from τ , or,
more generally, from a Markov chain for which τ is the limiting distribution,
is easy, while drawing a sample directly from µ is not. If one wants to apply
the HI approach just described within a Gibbs sampler type of simulation,
where the whole parameter space is a product of (X,SX) with some other
subspace(s) then µ represents in fact a full conditional, hence µ (as well as τ
and φ) changes at any iteration. In this case, one has to map x0 (part of the
current state of the chain) to a point z0 in Z, draw a z1 from an appropriate
Markov transition kernel, and map back z1 to x1 = φ(z1). Theorem 2 in Petris
and Tardella (2003a) shows that if τ is invariant for the transition kernel
used to sample z1 then, subject to an intuitive condition on the mapping
x0 7→ z0, µ is invariant for the resulting transition kernel in X. We prove
below a similar result stated in terms of reversibility, instead of invariance.
Remember that, by definition, if µ is a probability and H is a transition
kernel, H and µ are in detailed balance if, for any two measurable sets A, B,∫

A×B
µ(dx)H(x, dy) =

∫
B×A

µ(dx)H(x, dy).

2http://cran.r-project.org/mirrors.html
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Theorem 1. Let µ and τ be probabilities on (X,SX) and (Z,SZ), respec-
tively, and let φ : Z → X be a measurable function such that µ = τφ−1 (i.e.,
φ is a random element of X defined on Z, whose distribution is µ). Suppose
that K is a transition kernel on (Z,SZ) which is in detailed balance with
τ , and J is a transition kernel from X to Z such that, for every B ∈ SZ,
J(x,B) is a version of τ(B|φ = x). Define a transition kernel H on X by
setting

H(x,A) =

∫
Z

J(x, dz)K(z, φ−1A), x ∈ X,A ∈ SX .

Then H and µ are in detailed balance.

Proof. By definition of conditional probability, for any A ∈ SX and E ∈ SZ ,∫
A

µ(dx)J(x,E) = τ(φ−1A ∩ E).

It follows, using standard arguments, that for any bounded measurable f : Z →
R and for any A ∈ SX ,∫

A

µ(dx)

∫
Z

J(x, dz)f(z) =

∫
φ−1A

τ(dz)f(z). (3)

Consider now sets A,B ∈ SX . One has,∫
A×B

µ(dx)H(x, dy) =

∫
A

µ(dx)H(x,B)

=

∫
A

µ(dx)

∫
Z

J(x, dz)K(z, φ−1B)

=

∫
φ−1A

τ(dz)K(z, φ−1B) (by (3))

=

∫
φ−1B

τ(dz)K(z, φ−1A) (by reversibility of K)

=

∫
B

µ(dx)

∫
Z

J(x, dz)K(z, φ−1A) (by (3))

=

∫
B

µ(dx)H(x,A) =

∫
B×A

µ(dx)H(x, dy),

which shows that H and µ are in detailed balance.
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To clarify the content of the theorem in the context of HI when the
target µ has a continuous component and a point mass we point out that
the kernel J is such that if x 6= 0 then it just maps x back to z = φ−1(x)
deterministically (φ is in this case given by (2) and is one-to-one), while if
x = 0 it draws a point z at random in the ball of radius r. Furthermore,
the above theorem shows that, if one uses ARMS along a randomly selected
line through the current point as the transition kernel K to sample from
the continuous distribution τ (as advocated in Petris and Tardella, 2003a),
then the resulting sampler is reversible with respect to µ. This is a stronger
conclusion than the one of Theorem 2 in Petris and Tardella (2003a), where
it is only shown that µ is the stationary distribution of the sampler. Similar
considerations hold when the HI approach is applied to a target with more
than two nested components.

3 Hyperplane Inflation: locally nested mod-

els

In transdimensional MCMC the goal is to generate a Markov chain having
a prescribed limiting distribution on a space X = ∪kXk, which is a disjoint
countable union of spaces usually identified as models in a Bayesian setting.
In most applications the models Xk are locally nested, in the sense that for
any distinct Xj and Xk there is a sequence i0, . . . , in with i0 = j, in = k, such
that either Xis−1 ⊂ Xis or Xis−1 ⊃ Xis , for s = 1, . . . , n. A typical example is
provided by the context of variable selection for a linear regression function
where p covariates are available. Any two distinct subsets of covariates locally
nested in the sense they are both nested in at least the full model with all
covariates.

Having built an all-purpose sampler which is in detailed balance on pairs
of nested models, we can now try to use it locally in this more general setting.
For example, from the current state x ∈ Xj of the chain, one can select at
random another model Xk so that the two models Xj and Xk are nested, and
use a Markov kernel H on Xj ∪Xk as described in the previous section, to
move on the subset Xj ∪Xk of the entire space X. The condition of having
a locally nested family of models ensures that the resulting sampler can be
irreducible, i.e. any point in X can be reached from any other point in a
finite number of transitions. Most RJ samplers use the same philosophy of
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moving between nested models when proposing the addition or removal of
one “dimension” of the model. This extra dimension may be a component
for mixture models, a change point for change point models, an explanatory
variable for regression models, and so on. In RJ one has to design a tai-
lored joint proposal distribution for the move type and the proposal state,
and detailed balance with the target distribution is achieved through the
introduction of an accept/reject step involving both the move type selection
mechanism and the mechanism used to generate the proposed new state of
the chain. Following the approach proposed here, on the other hand, it is
enough to consider an acceptance probability depending on the move type
only, since HI provides a black-box kernel already in equilibrium with the
target distribution.

We now formalize our approach, starting with some definitions. Let
(V,SV ) be a measurable space indexing the set of available move types; for
example, HI in conjunction with ARMS on Xj∪Xk may be a move type (note
that this can be considered a transition kernel on the entire X by defining it
to coincide with the identity kernel (x,A) 7→ IA(x) outside Xj ∪Xk). Let ν
be an integral transition kernel from X to V , with density f with respect to a
base measure β: when the chain is at x, a move type v ∈ E ∈ SV is selected
with probability ν(x,E) =

∫
E
f(x, v) β(dv). In practice V is always finite

and a convenient choice for ν(x, ·) is the uniform distribution on the set of
move types available from x. Finally, for each v ∈ V , let Kv be a transition
kernel on X, which is in detailed balance with the target distribution µ. We
assume that for every A ∈ SX the function Kv(x,A) is measurable in (v, x).
Define the acceptance probability

αv(x, y) =
f(y, v)

f(x, v)
∧ 1, v ∈ V, x, y ∈ X,

and the transition kernel on X

H(x,A) =

∫
V

β(dv)f(x, v)

{ ∫
A

Kv(x, dy)αv(x, y)

+ δx(A)

∫
X

Kv(x, dy)
(
1− αv(x, y)

)}
, x ∈ X, ;A ∈ SX .

In summary, the kernel H can be roughly described by the following steps:

1. From the current point x ∈ X, select a move type v according to ν(x, ·).
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2. Draw a proposal y ∈ X from the distribution Kv(x, ·).

3. Accept y with probability αv(x, y), otherwise stay at x.

Theorem 2. With the previous definitions, H and µ are in detailed balance.

Proof. By assumption, the measure µ(dx)Kv(x, dy) is symmetric for each v.
Moreover, for every v, the function f(x, v)αv(x, y) = f(x, v)∧ f(y, v) is sym-
metric in x and y. Therefore the measure (on X×X) µ(dx)Kv(x, dy)f(x, v)∧
f(y, v) is symmetric as well. Consider now two sets A,B ∈ SX . We only
need to show detailed balance for the substochastic kernel given by the first
term in the definition of H above, i.e. the kernel arising when a proposal is
accepted. ∫

A

µ(dx)

∫
V

β(dv)f(x, v)

∫
B

Kv(x, dy)αv(x, y)

=

∫
V

β(dv)

∫
A

µ(dx)

∫
B

Kv(x, dy)f(x, v)αv(x, y)

=

∫
V

β(dv)

∫
A×B

µ(dx)Kv(x, dy)
(
f(x, v) ∧ f(y, v)

)
=

∫
V

β(dv)

∫
B×A

µ(dx)Kv(x, dy)
(
f(x, v) ∧ f(y, v)

)
=

∫
B

µ(dx)

∫
V

β(dv)f(x, v)

∫
A

Kv(x, dy)αv(x, y)

Since we have assumed that the kernels Kv are all in detailed balance with
µ, one may wonder whether the randomized acceptance step is really needed
or can be avoided altogether. The following example, in a very simple setting,
shows that the move type selection process may destroy the reversibility
property enjoyed by all the Kv.

Example. Consider X = {1, 2, 3, 4}, V = {0, 1} and suppose the target
distribution µ is uniform on X. Let Kv be defined by the transition matrices:

K0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , K1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
9



Note that both K0 and K1 are symmetric, which implies that they are in
detailed balance with the uniform distribution. Let p be a number in (1/2, 1),
and let ν be the transition kernel from X to V defined by

ν =


1− p p
1− p p
p 1− p
p 1− p

 .
The transition kernel on X obtained by first selecting v according to ν and
then moving according to the dynamics determined by Kv is

K(x, y) =

∫
V

ν(x, dv)Kv(x, y).

Simple arithmetics shows that this corresponds to the transition matrix

K =


0 1− p p 0

1− p 0 0 p
1− p 0 0 p

0 1− p p 0

 .
Since K is not symmetric, the resulting Markov kernel is not in equilibrium
with the uniform distribution. However, consider using Kv as a proposal
kernel only, introducing the acceptance step described above: if, from the
current x, move type v is selected and y is drawn from Kv(x, ·), the chain
moves to y with probability αv(x, y) = 1∧

(
ν(y, v)/ν(x, v)

)
. Straightforward

calculations show that in this case the resulting kernel on X has transition
matrix 

2p− 1 1− p 1− p 0
1− p 2p− 1 0 1− p
1− p 0 0 p

0 1− p p 0

 ,
which is symmetric and hence in equilibrium with the target uniform distri-
bution.

4 Application to model selection

We illustrate the effectiveness of the advances in exploring distributions sup-
ported on subspaces which are not nested but only locally nested through a
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classical example of variable selection in a regression context. A controlled
experiment can be performed as follows. A data set is produced by fixing a
number of observations, n, and fixing corresponding values of a certain num-
ber of covariates Zi = (Zi1, ..., Zip) for i = 1, ..., n. Given those covariates
one generates

Yi ∼ N(Ziβ, σ
2I)

where β = (β1, ..., βp) is a known fixed vector of regression coefficients with
possibly some null component so that only some of the covariates are effective
in explaining the data. When making inference in this context the main
parameter space of interest to consider is the locally nested space of regression
coefficients that can be written as

X =
⋃

λ∈{0,1}p

Xλ

where λ = (λ1, ..., λr, ..., λp) is a binary label indexing all 2p possible submod-
els which take into consideration the presence of only a subset of non-null
regressors so that the corresponding labelled subspace is

Xλ = {(β1, ..., βr, ..., βp) ∈ Rp | βr = 0 if λr = 0} .

In fact, one is interested in exploring the full parameter space X × (0,∞)
for both regression parameters β and σ2. We adopt the following conjugate
prior for the unknown parameters:

λ ∼ Unif({0, 1}p),

βr | λ ∼ N (0, ρσ2), if λr = 1,

σ−2 ∼ G
(
ξ

2
,
ψ

2

)
.

(Here the Gamma distribution G(a, b) has mean a/b). With this prior it is
possible to compute the exact values of posterior probabilities of all 2p sub-
models and hence compare the estimated probabilities based on our proposed
transdimensional MCMC sampler.

The only transdimensional component of the implemented MCMC scheme
is performed through sampling with the aid of the HI procedure combining
two competing models Xj = Xλ(1)

and Xk = Xλ(2)
which differs only for one

11



dimension, i.e. for the presence/absence of a regressors. Hence we considered
moves which combine two subsets of regressors which are the same except
for the presence/absence of one regressor

V =

{
v = (λ(1), λ(2)) :

p∑
r=1

∣∣λ(1)r − λ(2)r

∣∣ = 1

}
.

We have designed a very simple move type distribution f(β, v), with v ∈ V,
that at each iteration proposes sequentially

1. to add or drop with equal probability one regressor (i.e. leaving it free
to be non-null) with the obvious exceptions when β is such that there
is no regressor to add or drop (all non-null regressors already in β or
just one non-null regressor in β);

2. randomly choosing which one among all available non-null regressors is
the one to add or drop.

In order to keep the chain in detailed balance we have to adjust for move type
unbalance. In fact, if βprop contains say k + 1 non-null regressors and βcurr
contains say k non-null regressors f(βcur, v) corresponds to the probability
of adding one non-null component move while f(βprop, v) corresponds to the
probability of dropping one non-null component. Of course one has to realize
that the two probabilities are not the same, since when adding from a model
with k regressors the one which is in βprop this is drawn with probability
(p−k)−1 while when dropping from a set of k+1 non-null regressors the one
corresponding to βcurr this happens with probability (k + 1)−1. Obvious ad-
justments have to be made in case either βcurr (or βprop) contains no regressor
or all regressors. Also, in order to get a faster mixing and better accuracy,
instead of the original densities on the corresponding submodel space we used
a scaled-shifted transformation exploiting simple least-square estimates. All
the remaining simulation tasks in the inflated subspaces or in the σ2 space
have been performed through the ARMS routine, after writing the appropri-
ate un-normalized full-conditional density to draw from. In Figure 1 one can
see the traces of the estimated probabilities of the two most probable models,
while in Figure 2 we display the discrepancies between simulated and exact
values of posterior probabilities for the most probable ten submodels when
p = 10, β = (6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0)′, ρ = 100, ξ = ψ = 0.01.
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It can be seen from Figure 2 that the MCMC estimates of the poste-
rior probabilities of the different models are very close to the true posterior
probabilities.

5 Application to mixture models

We have also applied the approach described in the previous section to the
Bayesian analysis of mixture models. One of the peculiar and intriguing
feature of this application is that our method proved itself effective even in a
context where the different dimensional spaces are not usual Euclidean spaces
like Rk but consists of simplexes. More specifically, we consider a mixture of
an unknown number of normal distributions. Let K+1, for a fixed K, be the
maximum number of components that one is willing to allow in the mixture,
and let ϕ(y;µ, σ2) denote the Gaussian density with mean µ and variance σ2.
The model assumes that we have independent observations from the density

f(y) =
K∑
i=0

πiϕ(y;µi, σ
2
i ).

For the unknown means and variances of the individual components we as-
sume the following prior distribution.

µ0, . . . , µK
iid∼ N (µ, σ2),

µ ∼ N (µ̄, ρσ2),

σ−2 ∼ G(αµ, βµ),

p(σ2
i ) ∝

(
σ2
i

)(ε−1)/2
I(ψ,ψ+∆)(σ

2
i ), i = 0, . . . , K (independent),

ψ ∼ G(αψ, βψ),

∆ ∼ Pareto(α∆, β∆).

(Here Pareto(α, β) has density βαβx−β−1I(α,+∞)(x).) For the weights π0, . . . , πK
we adopt the following prior. First of all, in order to enforce identifiability,
we assume that π0 ≥ π1 ≥ · · · ≥ πK . Second, we want to give a positive
prior probability to each of the regions

S0
k =

{
(π0, . . . , πK) :

∑
πi = 1, π0 ≥ · · · ≥ πK , πk > 0, πk+1 = 0

}
,
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for k = 0, . . . , K, so we set a priori P (S0
k) = wk and, given S0

k , (π0, . . . , πK) ∼
Unif(S0

k) (k = 0, . . . , K). For convenience we follow the standard procedure
to introduce for each observation an indicator variable z so that

f(y|z) = ϕ(y;µz, σ
2
z),

P (z = i) = πi i = 0, . . . , K.

Clearly, integrating out the indicator variable z, one gets back the original
mixture model for the observation y. Assuming that we have a sample of
size n, we will denote the observations by y1, . . . , yn and the corresponding
indicator variables by z1, . . . , zn. Moreover, we will denote by Jzi the set of
indices j such that zj = i and by ni the cardinality of Jzi . If we consider the
whole set of parameters subdivided into the following blocks, (z1, . . . , zn),
(µ0, . . . , µK), (σ2

0, . . . , σ
2
K), µ, σ2, ψ, ∆ and (π0, . . . , πK), we can think of

building up a Gibbs sampling scheme such that drawing from the full con-
ditional distribution of any block but the last one is straightforward. So
we focus on how to use HI to draw from the full conditional distribution of
(π1, . . . , πK) over the space X = ∪Kk=1Sk, where Sk denotes the projection of
S0
k onto the last K − 1 coordinates, i.e.

Sk =
{
(π1, . . . , πK) :

∑
πi ≤ 1, 1−

∑
πi ≥ π1 ≥ · · · ≥ πK , πk > 0, πk+1 = 0

}
.

(In the notation of Section 3, Xk = Sk.) In fact, the prior density on the
mixture weight parameters π = (π1, . . . , πK) can be viewed as a density

gprior(π) =
K∑
k=0

wkgk(π1, . . . , πk)ISk
(π),

with respect to the measure γ defined by

dγ =
K∑
k=0

dηkdδK−k

on the largest K-dimensional simplex{
(π1, . . . , πK) : πi ≥ 0, i = 1, . . . , K;

∑
πi ≤ 1

}
where g0 = 1 and gk(π1, . . . , πk) = k!(k + 1)! for k = 1, . . . , K. A direct
application of Bayes theorem shows that the full conditional distribution of

15



π has density, w.r.t. γ,

g(π) ∝
K∑
k=0

wkgk(π1, . . . , πk)ISk
(π)

K∏
h=0

πnh
h ,

with π0 = 1 −
∑

i=1...K πi and with the convention 00 = 1. Hence we are
in the same context of Section 3, so we just need to introduce a move type
distribution ν(π, ·) over

V = {v = (i, j) : 0 ≤ i < j ≤ K, j − i = 1},

and, once the move v has been selected, draw from the auxiliary density
evaluated by the HI package. The distribution ν(π, ·) selecting the move type
works as follows: if the current value of π within the Gibbs sampler belongs to
Sk, then move type v = (k, k+1) or v = (k, k−1) is selected, each with equal
probability. Clearly, if k = 0 (or k = K), then there is only one available
move v = (k, k + 1) (or, respectively, v = (k − 1, k)); similarly, if nk > 0,
then Sk−1 has probability zero and the only effectively available move is v =
(k, k+1). The cases k = 0 and k = K are treated similarly, with the obvious
modifications. In all cases, the acceptance probability αv(πcurrent, πprop) of
a proposed point πprop is either one or one half and it can be computed in
a straightforward manner. Hence, to draw a new candidateπprop one can
use HI and ARMS to draw from the auxiliary density corresponding to the
restriction of g(π)γ(dπ) over Si ∪ Sj, if v = (i, j).

We tried our algorithm with the prior specified above on a data set con-
taining the velocity (in 103 km/sec) of 82 galaxies, previously analyzed by
several authors, including Roeder (1990) and Richardson and Green (1997).
We allowed for a maximum of K + 1 = 20 components in the mixture, with
wk ∝ 1, specifying the following values for the parameters of the prior:

µ̄ = 21 r = 100 ε = 10−3

αµ = 2 αψ = 0.5 α∆ = 10

βµ = 10 βψ = 0.5 β∆ = 0.1

The sampler was run for 100000 iterations, including a burn in of 10000
iterations. Let us focus on posterior model probabilities, i.e. the probability
of the data coming from a mixture of normals with a specific number of
components. Figure 3 shows the trace of the visited models. It is apparent
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Figure 3: Trace of visited models

that the sampler moved fairly often among different models, which is a sign
of good mixing properties. The MCMC estimates of the posterior model
probabilities are given in Table 1, together with their Monte Carlo standard
error, computed using Sokal’s method (Sokal, 1989). Models having posterior
probability below 1% are not included in the table.

Table 1: Posterior model probabilities
Nr. of comp. 3 4 5 6 7 8 9
Prob. (%) 2.8 13.2 28.7 29.2 17.4 6.2 1.6
Std. err. × 103 4.23 8.35 8.78 5.47 4.99 2.18 5.36

6 Concluding remarks

We have shown how the transdimensional MCMC simulation scheme pro-
posed by Petris and Tardella (2003a) can be extended from the nested model
case to the more general situation of locally nested models. In fact, we have
derived theoretical premises for a wider use of this all-purpose simulation
scheme and we have shown the effectiveness of that approach on two of the
most common problems in transdimensional MCMC, namely mixture models
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with unknown number of components and covariate selection in a general lin-
ear regression setting. Indeed, the new simulation scheme can be effective in
avoiding unnecessary simulations on a common maximal model space as was
the case in the previous proposal of Petris and Tardella (2003a). Basically
we have set up a transdimensional hybrid (compound) kernel which exploits
an intermediate space where the dimension matching is performed through a
geometrically intuitive inflation of the smaller submodel into the subspace of
the larger one. We stress again the fact that one of the most appealing fea-
tures of the proposed approach consists in avoiding the difficult evaluation
of Jacobians usually required in RJ schemes to make effective split/merge
steps. This is likely to facilitate routine implementation of transdimensional
samplers by non-expert practitioners, possibly via stand-alone software pack-
ages such as the popular WinBUGS suite (Spiegelhalter, Thomas, Best and
Gilks, 1994; Gilks and Spiegelhalter, 1992). This remains true even for mod-
els in which the full conditional distribution of the within-model parameters
is not available in closed form, so that the transdimensional Gibbs sampler
of Gottardo and Raftery (2004) cannot be used.

A feature not yet fully explored that might further improve the efficiency
of the simulation scheme is related to the possibility of making adaptive
transformations of the component densities which contribute to define the
auxiliary density in the subspace of the largest submodel. This will be the
focus of future research.
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Dept. of Statistics.

Gilks, W. R., D. T. and Spiegelhalter, D. J. (1992). Software for the gibbs
sampler, Computing Science and Statistics 24: 439–448.

Gottardo, R. and Raftery, A. (2004). Markov chain monte carlo with mixtures
of singular distributions, Technical Report 470, Department of Statistics,
University of Washington.

Green, P. (1995). Reversible-jump Markov chain Monte Carlo computations
and Bayesian model determination, Biometrika 82: 711–732.

Green, P. (2003). Trans-dimensional Markov chain Monte Carlo, in P. Green,
N. Hjort and S. Richardson (eds), Highly structured stochastic systems,
Oxford University Press, Oxford, pp. 179–198.

Koop, G. (2003). Bayesian Econometrics, Wiley.

Petris, G. and Tardella, L. (2001). Autoregressive model averaging: a new
computational approach, in C. Provasi (ed.), Modelli complessi e metodi
computazionali intensivi per la stima e la previsione – S.CO. 2001.

Petris, G. and Tardella, L. (2003a). A geometric approach to transdimen-
sional Markov chain Monte Carlo, The Canadian Journal of Statistics
31: 469–482.

Petris, G. and Tardella, L. (2003b). Regeneration techniques for MCMC,
in C. Provasi (ed.), Modelli complessi e metodi computazionali intensivi
per la stima e la previsione – S.CO. 2003, pp. 320–325.

Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with
an unknown number of components (with discussion), Journal of the
Royal Statistical Society. Series B 59: 731–792.

19



Roeder, K. (1990). Density estimation with confidence sets exemplified by
superclusters and voids in galaxies, Journal of the American Statistical
Association 85: 617–624.

Sisson, S. (2005). Transdimensional Markov chains: a decade of progress
and future perspectives, Journal of the Americal Statistical Association
100: 1077–1089.

Sokal, A. (1989). Monte Carlo methods in statistical mechanics: foundations
and new algorithms, Cours de Troisiéme Cycle de la Physique en Suisse
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