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Abstract

We propose two algorithms for robust two-mode partitioning of a
data matrix in the presence of outliers. First we extend the robust
k-means procedure of Gallegos and Ritter (2005) to the case of biclus-
tering, then we slightly relax the definition of outlier and propose a
more flexible and parsimonious strategy, which anyway is inherently
less robust. We investigate the breakdown properties of the algo-
rithms, and illustrate the methods with simulations and three real
examples.

Keywords: biclustering, double clustering, microarrays, robustness, out-
liers

1 Introduction

Let X be an n by p observed data matrix. Classical (nonhierarchical) meth-
ods for cluster analysis deal with the identification of similarities among the
rows of X, by claiming the existence of I << n groups with close character-
istics.

There are many applications nevertheless in which one may want to clus-
ter both rows and columns. For instance in DNA microarrays analysis the
observed expression of p genes on n slides is recorded, and while clustering
of the genes is of primary interest, clustering of the slides leads to identifica-
tion of groups among the patients and is of interest too. Other applications
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include marketing (for instance, clustering of customers and goods), biology,
psychology, sociology. A possible approach is to separately cluster the rows
and the columns. It is known anyway that this approach does not allow to
specify an overall objective function, thus lacking optimality properties; and
furthermore ignores the dependence structure between rows and columns.
Following an idea that dates back at least to Fisher (1969); Hartigan (1972),
one may find more appropriate to perform a simultaneous clustering of rows
and columns. This is called biclustering or double clustering in the literature,
see Van Mechelen et al. (2004); Madeira and Oliveira (2004) for a review.

While there are now many competing strategies for performing double
clustering in many different situations, to the best of our knowledge there
still are no studies about the robustness properties of double clustering, and
very few attempts to robustify the procedures. This is crucial, since double
clustering is often applied to large data matrices in which contamination
is very likely to occur. In DNA Microarrays for instance the measuring
technique itself is well known to be likely to regularly lead to the presence
of outliers. Ignoring this problem may lead to estimates, and consequently
groupings, that are unduly different from the true underlying structure of
the uncorrupted data.

In this paper we deal with double clustering in the presence of outliers,
and focus on the class of methods known as “double k-means” (Vichi, 2000).
We thus assume that the generic element of the data matrix xij is a real
number.

It may be argued that outliers could be isolated by considering a higher
number of row and column clusters. Recall nevertheless that (i) the number
of clusters must be set in advance, and that we could have not taken into
account the presence of contamination; (ii) stability of the algorithms can
be seriously affected by unrecognized outliers and (iii) the output of small
clusters, or even singletons, may lead to problems in interpretation and use of
the clustering for future prediction, classification and/or resource allocation.
In marketing research, for instance, it is often the case that clusters serve for
the definition of few different marketing strategies for possibly large groups
of customers. Furthermore, data driven methods for setting the number of
clusters may easily break down, and the curse of dimensionality may make it
extremely difficult to find the right number of clusters. It often happens that
n >> p or n << p, so at least one between I and J would be particularly
hard to choose without having the genuine clusters contaminated by outliers.

Robust (single-mode) nonhierarchical clustering of a data matrix was
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considered among others by Kaufman and Rousseeuw (1990) (with the k-
medoids method), Cuesta-Albertos et al. (1997), Garcia-Escudero and Gordaliza
(1999), Gallegos and Ritter (2005). The former methods, except from the
last, rely on α-trimming rather than direct identification of outliers. We
prefer choosing the number of outliers in this work mainly because we want
to identify the outliers in addition to robustification of centroid estimation.
Trimming methods (Cuesta-Albertos et al., 1997; Garcia-Escudero and Gordaliza,
1999) look for the ⌈n(1−α)⌉ observations closer to the centroid in each clus-
ter. It is then assumed that all clusters are contaminated with about the same
amount of outliers. The approach of Gallegos and Ritter (2005) instead dis-
cards a pre-specified total number of outliers o1, which can be distributed
equally among the clusters or can belong to the same cluster if needed. It is
easy to modify the proposed algorithms to accommodate trimming methods,
which are intuitively seen to be more robust and less flexible.

Gallegos and Ritter (2005) define a row outlier as a row of the data matrix
xi ∈ Rp for which there is at least a contamination. The implicit idea is that
an outlier is an object far from its closest centroid. We will extend a simpler
form of their procedure to the case of double clustering in Section 2. In
Section 3 we will slightly relax the definition of outlier, providing a second
algorithm. The two algorithms can be combined, as we note in Section 3.1.
In Section 4 we discuss a novel strategy to choose the number of outliers.
We point out that this strategy may be useful also for single-mode robust
clustering methods. In Section 5 we study the breakdown points of our
newly proposed procedures. In Section 6.1 we provide some simulation and
real data applications are illustrated in Section 6.2. Some final remarks are
given in Section 7.

1.1 Notation

We introduce now the notation we will follow throughout the paper:

xi.: i-th row of the data matrix X

x.j : j-th column of the data matrix X

n: the number of rows of the data matrix X

p: the number of columns of the data matrix X

I: the (user-specified) number of row clusters
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J : the (user-specified) number of column clusters

o1: the (user-specified) number of row outliers

o2: the (user-specified) number of column outliers

nr: the number of rows estimated to belong to the r-th row cluster

pc: the number of columns estimated to belong to the c-th column cluster

2 Robust Double k-means

We will use a very common model for double clustering (Van Mechelen et al.,
2004):

X = Ux̄V ′ + E, (1)

the only difference being that we allow for the presence of outliers. x̄ is an
IxJ matrix of centroids, while the nxI matrix U and the pxJ matrix V are
binary and the row sums are less than or equal to 1; and E is a residual
error term on which we do not make any distributional assumption. This
setting called object and variable packing in Vichi (2000). Our first proposal
for robust double clustering is a specific model of the class defined in Vichi
(2000); in which we force o1 rows of U and o2 rows of V to sum exactly to
zero, and the others to sum exactly to one. In this way we mark o1 rows and
o2 columns as outliers: they are not formally assigned to any of the I row
clusters or J column clusters, and we do not use them for estimation of the
centroid matrix.

The robust double clustering model can be fit with an alternating least
squares procedure. We will use a random initialization and a multistart for
the algorithms in this paper. Given current estimates for U , x̄ and V , the
general iteration is given in Algorithm 1.

A short description of its rationale follows. First, we update the row
memberships. For each row we compute I weighted distances from the r-
th group d2

r(i). This distance is the sum of the distances between the i-th
row and the r-th row of the centroid matrix, weighted with the number of
columns involved in each column group. The current column outliers are
not used in the computation. We then assign each row to the closest row
group. Then, we determine the row outliers by not assigning to groups the
o1 rows most distant from the closest centroid. Note that the algorithm, in
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Algorithm 1 Robust Double k-means

Update the row memberships

Let d2
r(i, c) =

p∑

j=1

(xijvjc − x̄rc)
2, i = 1, . . . , n, c = 1, . . . , J , r = 1, . . . , I.

Let d2
r(i) =

∑
c d2

r(i, c)pc.
Let ri = arg minr d2

r(i).
Set Uiri

= 1. All the other elements of the i-th row of U are set to 0.
Determine the row outliers

Determine a permutation k : {1, . . . , n} → {1, . . . , n} such that

d2
rk(1)

(k(1)) ≤ d2
rk(2)

(k(2)) ≤ · · · ≤ d2
rk(n)

(k(n)).

Set Uk(n−o1+1). = Uk(n−o1+2). = · · · = Uk(n). = 0.
Update the column memberships

Let d2
c(j, r) =

n∑

i=1

(xijuir − x̄rc)
2, j = 1, . . . , p, c = 1, . . . , J , r = 1, . . . , I.

Let d2
c(j) =

∑
r d2

c(j, r)nr.
Let cj = arg minc d2

c(j).
Set Vjrj

= 1. All the other elements of the j-th row of V are set to 0.
Determine the column outliers

Determine a permutation z : {1, . . . , p} → {1, . . . , p} such that

d2
cz(1)

(z(1)) ≤ d2
cz(2)

(z(2)) ≤ · · · ≤ d2
cz(n)

(z(n)).

Set Vz(p−o2+1). = Vz(p−o2+2). = · · · = Vz(p). = 0.
Estimate the centroid matrix

x̄ = (U ′U)−1U ′XV (V ′V )−1.
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parallel with Gallegos and Ritter (2005) suggests to sort the minimum dis-
tances, but looking o1 times for the maximum may be more computationally
advantageous.

We do the same for the column memberships and outliers, and finally
estimate the centroid matrix by least squares.

Robustness stems from the fact that outliers are not involved in the com-
putation of the distance, and then do not contribute either to classification
or estimation of the centroid matrix.

We stress that outliers are unusual observations within their cluster. This
the main motivation behind the proposal of simultaneous clustering and out-
lier detection, and leads to a drastic reduction of masking effects with respect
to outlier identification before cluster analysis.

When we update the row and column memberships, all the objects are
assigned to a group; and only later some of them are marked as outlying.
We can use this fact to see which is the closest block for a given outlier, and
similarly to realize with respect to which cluster an observation is outlying.
The most important fact is that we do not use outlying observations for
centroid estimation.

Gallegos and Ritter (2005) minimize a criterion based on the Mahalanobis
distance; which is usually justified in the setting of model based clustering
(Bock, 1996; Fraley and Raftery, 2002). The idea stems from the minimum
covariance determinant (MCD) approach (Rousseeuw, 1984; Rousseeuw and Van Driessen,
1999; Hardin and Rocke, 2004), who show that by successively ordering of
observations in terms of Mahalanobis distance, and discarding of the high-
est distances, one achieves convergence to the empirical covariance matrix
with smallest determinant for the non-discarded observations. The steps of
the algorithm are usually called “concentration” steps, and always yield a
decrease in the determinant of the covariance matrix of the non-discarded
observations. Unlike these works we favor a least squares approach, thus
avoiding the use of the sum of squares and products matrix. This is par-
ticularly computationally advantageous when partitioning the columns, if n
is large; or when partitioning the rows if p is large. The biggest drawback
is that we do not have the additional flexibility of allowing for ellipsoidal
clusters, but only look for spherical clusters. Of course, standardization of
X is always useful since we also are implicitly assuming that the groups are
equally scattered, as is common for k-means and trimmed k-means. These
assumptions are quite strong but are seen to yield stability and good gener-
alization properties of the estimated centroid, provided they are not grossly
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violated.
Another possibility is to consider the Mahalanobis distance for partition-

ing the (row or column) vectors of smaller dimensionality and a least squares
approach for partitioning the other mode; and generalization of the algo-
rithms to this case is straightforward.

3 Double Clustering with Double Labeling of

Outliers

The approach to double clustering of Algorithm 1 is robust with respect to
contamination (see Section 5), but may lead to discard valuable information.
If in fact one single dimension for a (row or column) vector is contaminated,
the entire vector may (and hopefully will) be marked as outlying. The loss of
information may not be negligible when the number of vectors is small. We
argue that uncorrupted dimensions of the marked vector can still be used as
a valuable and reliable information for the clustering, and thus propose here
a more careful algorithm that makes use of a double labeling: each row and
column will be marked as belonging to one of the groups, and will also be
marked as being outlying or not.

If an object is not contaminated, then it is assigned to a group and all
its dimensions contribute to the estimate of the corresponding centroid. If
few dimensions of an object are corrupt, it is marked as being an outlier, but
only for the corrupt dimensions. The uncorrupted dimensions contribute to
the estimate of the corresponding centroid.

This is also useful for the sake of identifying outliers, in that we will be
able to explain which dimensions contribute to classify an object as outlying,
hence enhancing interpretability.

The same algorithm would result from an approach in which we look for
contaminated entries, instead of contaminated objects.

We will make use of two binary vectors, η and φ, respectively of length
n and p. If ηi is 1, the p dimensions of row i will be used for clustering,
otherwise only the dimensions corresponding to a non-zero φ will be used;
and similarly for the column outliers.

Once again we can fit this model through an alternating least squares
approach. Given current estimates for U , x̄ and V , the general iteration is
given in algorithm 2.
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Algorithm 2 Robust Double k-means with double labeling

Update the row memberships

Let d2
r(i, c) =

∑
j max (ηi, φj)(xijvjc − x̄rc)

2, i = 1, . . . , n, c = 1, . . . , J ,
r = 1, . . . , I.
Let d2

r(i) =
∑

c

∑
j d2

r(i, c)vjc max (ηi, φj).

Let ri = arg minr d2
r(i).

Set Uiri
= 1. All the other elements of the i-th row of U are set to 0.

Determine the row outliers

Let νi =
∑

j(xij − 1/J
J∑

c=1

x̄ric)
2(1 − φj) , i = 1, . . . , n.

Determine a permutation k : {1, . . . , n} → {1, . . . , n} such that

νk(1) ≤ νk(2) ≤ · · · ≤ νk(n).

Set ηk(n−o1+1) = ηk(n−o1+2) = · · · = ηk(n) = 0, and all the other elements to
1.
Update the column memberships

Let d2
c(j, r) =

∑
i max (φj , ηi)(xijuir − x̄rc)

2, j = 1, . . . , p, c = 1, . . . , J ,
r = 1, . . . , I.
Let d2

c(j) =
∑

r

∑
i d

2
c(j, r)uir max (φj, ηi).

Let cj = arg minc d2
c(j).

Set Vjrj
= 1. All the other elements of the j-th row of V are set to 0.

Determine the column outliers

Let ξj =
∑

i(1 − ηi)(xij − 1/I
∑I

r=1 x̄rcj
)2, i = 1, . . . , n.

Determine a permutation z : {1, . . . , p} → {1, . . . , p} such that

ξz(1) ≤ ξz(2) ≤ · · · ≤ ξcz(n).

Set φz(p−o2+1) = φz(p−o2+2) = · · · = φz(p) = 0, and all the other elements to
1.
Estimate the centroid matrix

x̄hk =

P

ij

xijuihvjk max (ηi,φj)

P

uihvjk max (ηi,φj)
, for h = 1, . . . , I and k = 1, . . . , J .
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The general ideas behind algorithm 2 are the same as those behind al-
gorithm 1. When we update the row memberships, d2

r(i) is still a weighted
sum of distances, but here we discard xij from the computation not just if
the j-th column is marked as outlying, but only if both the i-th row and the
j-th column are marked as outlying.

There is a slight difference in the determination of the outliers step. For
each row, we compute the distance between each entry and its average cen-
troid with respect to the column groups, but only for the columns that are
marked as outlying. The reason is that we estimate, in the current iteration,
that outliers can only be in that columns. If a row is far from its average cen-
troid for the columns that contain the outliers, then it contains the outliers;
and otherwise it does not.

The same approach is applied to determine the column memberships and
outliers. Finally, the least squares estimate of the hk-th entry of the centroid
matrix is given by the average of the elements of X belonging to the h-th
row group and k-th column group whenever they are not marked as being
outliers.

Remark 3.1. This algorithm is more parsimonious than algorithm 1, any-
way, often at the price of the need of a larger number of iterations before
convergence. Furthermore, as we will see below it is inherently less robust.

Remark 3.2. The present procedure with J = 1 and 0 < o2 < p is a gener-
alization of Gallegos and Ritter (2005), in the sense that we do single-mode
robust partitioning marking objects as only partially contaminated.

3.1 Combining the algorithms

By combining the algorithm in Section 2 with the algorithm of Section 3, one
can combine the flexibility of the double classification of certain objects with
the enhanced robustness of marking entire vectors as contaminated. If an
object is entirely or mostly corrupt, then it is a genuine outlier and belongs
only to the set of outliers. If an object is corrupted only in a small number
of dimensions, then it can still be clustered and the uncorrupted dimensions
can be used to estimate the centroid matrix.
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4 Choosing the number of outliers

There are four quantities to be chosen in advance in order to apply our algo-
rithms. First, one must choose the number of row clusters I and the number
of column clusters J . Choosing the number of clusters is still an open problem
in cluster analysis, and we will not deal with it in this paper. We note that in
confirmatory cluster analysis and in other situations at least one of the two is
forced by the application. Furthermore, as pointed out by Climer and Zhang
(2006), it often happens that a range of values for choosing the number of
clusters are of interest, and the desireable magnitude is problem specific. To
the best of our knowledge, the only available automatic method specifically
designed for double clustering (in the absence of probabilistic assumptions) is
the pseudo-F of Rocci and Vichi (2004) (see also Hartigan (1978)). We point
out anyway that common methods for choosing k in k-means, as we note
below, are easily generalized to double clustering; and that information cri-
teria (AIC, BIC and similar) can be exploited in the presence of probabilistic
assumptions.

In this section we discuss automatic strategies for choosing the number of
outliers; which is not easy in our setting since we can not rely on probabilistic
assumptions on the distribution of the data. We propose here a forward
search method.

Let x̄(k) denote the k-th biggest value of the vectorized x̄. For each
possible configuration of outliers o1 and o2, we suggest evaluating

G(o1, o2) = max
k

|(x̄(k) − x̄0(k))|/ max(|x̄(k)|, |x̄0(k)|). (2)

where x̄0 is the centroid estimated with o1 = o2 = 0. We order the entries of
the two matrices to avoid problems related with label switching.

The G statistic measures the maximum relative discrepancy between the
inclusion of no outliers and the use of o1 row outliers and o2 column outliers.
We list a formal and an exploratory use of the G statistic (2).

First, it can be used in a forward fashion to choose the number of outliers,
with the procedure of Algorithm 3.

At each step we evaluate the difference G − G′, that is, the standard-
ized maximal change in the centroid matrix obtained by adding one row or
column outlier. If this identifies an additional true outlier, there will be a
relatively large change in at least one of the entries of the centroid matrix,
say bigger than δ. Otherwise, there will be a small (lower than δ) change
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Algorithm 3 Determination of o1 and o2

Choose a stopping value δ
Choose a step size s1 and s2

Initialize o1 = o2 = 0, set G′ = 0.
while max(G(o1 + s1, o2), G(o1, o2 + s2)) − G′ > δ do

if G(o1 + s1, o2) ≥ G(o1, o2 + s2) then

Set G′ = G(o1 + 1, o2). Increment o1 by s1.
else if G(o1, o2 + s2) > G(o1 + s1, o2) then

Set G′ = G(o1, o2 + s2). Increment o2 by s2.
end if

end while

in the centroid matrix. The choice of δ depends on the application and on
the sample size. We suggest choosing smaller values of δ for large matrices,
since a single outlier may not yield a big change in the centroid matrix in
the presence of many observations. Unless stated otherwise, in this paper we
will use δ = 0.05, s1 = s2 = 1. Larger step sizes can be used to avoid being
trapped in local maxima by the presence of close outliers, and to speed up
the algorithm. We recommend in general using a relatively low δ, in order
to possibly overestimate the number of outlying locations. A single unde-
tected outlier can spoil the procedure, while a discarded uncontaminated
entry usually yields little information loss.

Such automatic choice of the number of outliers may lead to an algorithm
that fully embeds the spirit of robust statistics. If in fact there is no con-
tamination, o1 and o2 will possibly be set to zero or close, so that the robust
algorithm will give results comparable to the classical algorithm. If there is
contamination then o1 and o2 will be greater than zero, and outliers will not
lead to unreliable results.

Secondly, the G statistic can also be plotted in order to evaluate the level
of contamination of the data, alternatively as a function of o1 for fixed o2, as
a function of o2 for fixed o1; or a 3D plot can be generated.

Instead of the proposed statistic, one can also use any of the popular
statistics for evaluating the quality of clustering, such as the average Silhou-
ette (Kaufman and Rousseeuw, 1990). Many other possibilities are discussed
in Milligan and Cooper (1985); Gordon (1999). It is worth noticing that these
statistics should be extended to the double clustering situation, but in many
cases this is straightforward.
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A further possibility for choosing the number of outliers would be to
measure the agreement between different choices of o1 and o2, using Cohen’s
kappa as in Reilly et al. (2005) or the Rand’s Ck as in Chae et al. (2006).
When the clusterings agree even when increasing o1 or o2, there either are
close outliers or the outliers have all been sorted out. If the main aim is clus-
tering rather than centroid estimation, this last strategy is more appropriate
and easier.

5 Robustness Properties

There are many available methods to evaluate the robustness properties
of a procedure (Huber, 1981; Hampel et al., 1986). We will focus here on
global measures of robustness, given by breakdown values. Hodges (1967);
Donoho and Huber (1983) define a finite-sample breakdown value as the
smallest fraction of outliers that can break down the estimate in a sam-
ple. For an estimator T and data set X we denote it with ε∗n(T, X). The
asymptotic breakdown value (Hampel, 1971) is the breakdown value of a
procedure for an infinite number of observations. The worst case scenario is
given by an infinitesimal asymptotic breakdown value.

It is straightforward to extend the results of Garcia-Escudero and Gordaliza
(1999) to see that classical double k-means has infinitesimal asymptotic
breakdown value. In fact a single diverging entry suffices to make one cen-
troid diverge, so that for the double k-means the highest breakdown value is
ε∗n(x̄, X) = 1/ max(n, p).

Consider now our procedures, with o1 > 0 and o2 > 0. Consider Algo-
rithm 1, and suppose there are corrupted entries in o1 + o2 different rows.
All these can be discarded, however maliciously they are put, by marking o1

rows and the o2 columns to which the remaining belong. If there is only one
additional corrupted entry in a row/column combination that is not marked
as outlying, then at least one corrupted entry is included in the estimate of
the centroid matrix, and the procedure breaks down just like classical double
k-means. So for procedure of Section 2 it must be that the highest possi-
ble breakdown value is ε∗n(x̄, X) = o1+o2+1

max(n,p)
. Consider now Algorithm 2, and

suppose there are o2 + 1 corrupted entries on a single row. Then at least
one corrupted observation is included in the estimate of the centroid matrix.
Similarly, if there are o1 + 1 corrupted entries on a given column, at least
one corrupted observation is included in the estimate of the centroid matrix.
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Hence, for procedure of Section 3 it must be that ε∗n(x̄, X) = min(o1+1
n

, o2+1
p

).
The actual breakdown point depends on the sample data structure, re-

fer to Garcia-Escudero and Gordaliza (1999) for further comments on this
issue. We have few additional remarks: first, the results for algorithm
of Section 2 are well in agreement with the breakdown values obtained in
Gallegos and Ritter (2005) for robust single-mode k-means. Second, if we
let o1 = O(n) and o2 = O(p) the asymptotic highest breakdown value of
algorithms 1 and 2 is strictly positive. To parallel trimming methods, one
could set o1 = ⌈nα1⌉ and o2 = ⌈pα2⌉, for α1 and α2 small. Third, the proce-
dure with double labeling is inherently less robust, but it still may be very
useful for a carefully chosen number of outliers.

6 Illustration of the methods

6.1 Simulations

In this section we will compare the methods in simulation, reporting for each
setting the modified Rand index (Hubert and Arabie, 1985) measuring con-
cordance between estimated and true partition, the sum of the square error
(SSE) in recovering the centroid matrix, and average time (in seconds) for
each iteration. We report the rand index only for the originally uncontami-
nated rows and columns, thus overestimating the rand-index for the classical
double-k-means.

The setting is as follows: we randomly partition rows and columns into
I and J groups, without any control on the size of each group. We then
generate the centroid matrix according to the formula: x̄hk = (k− 1) ∗ I +h.
This way, the minimum distance between blocks is 1. We then generate the
data simulating independent normals centered at the opportune entry of the
centroid matrix, with two levels of noise (σ = 0.1 and σ = 0.5). For each
setting we perform B = 250 iterations.

We simulate without contamination (Table 1), contaminating only o2

columns for o1 rows (Table 2), and entirely contaminating o1 rows and o2

columns (Table 3). When we include outliers, we generate them by ran-
domly sampling from a normal with unit variance and mean, for the i-th
outlier, equal to -10*i*S, where S is sampled from a Rademaker distribution
(Pr(S = 1) = Pr(S = −1) = 0.5). We note that in this way the outliers
are well separated, but in certain simulation settings they share the same
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center of certain true clusters with the only difference of a larger spread;
thus making more difficult their identification and the recovering of the true
partition.

In the tables we report the results in parentheses for the classical double
k-means, algorithm 1 and algorithm 2.

The tables seem to arise the following comments:

• Little information loss is observed when using robust procedures in
the absence of contamination, especially with large matrices. Apart
from the last three cases, in which the number of outliers is grossly
overestimated, also the times needed for convergence are very close.

• When we partially contaminate some objects (Table 2), the classical
algorithm breaks down for small and moderate matrix size, and for
a few outliers also for big matrices. The robust algorithms perform
very well, with as expected algorithm 2 preferable to algorithm 1. The
differences between non-robust and robust algorithms are dramatic in
terms of SSE.

• This behavior is more evident when we completely contaminate some
objects (Table 3), with algorithm 1 preferable to algorithm 2 as could
be expected.

• Algorithm 1 is always faster to convergence than Algorithm 2

• The classical method is often much slower to convergence than the
robust methods in presence of outliers, likely due to instability.

6.2 Real Data Examples

6.2.1 Macroeconomic performance of industrialized countries

We first revisit the example of Vichi (2000) about the average macroeco-
nomic performances of the G7 most industrialized countries: France (FRA),
Germany (GER), Great Britain (GBR), Italy (ITA), United States of Amer-
ica (USA), Japan (JAP), Canada (CAN); plus Spain (SPA). The variables
measured were: Gross Domestic Product index (GDP), Inflation (INF), Bud-
get deficit/GDP (DEF), Public debt/GDP (DEB), Long term interest rate
(INT), Trade balance/GDP (TRB), unemployment rate (UNE). The mea-
surements refer to the period 1980-1990, and are of particular interest because
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n p σ I J o1 o2 m − rand SSE time

50 10 0.1 2 2 1 1 (1, 0.84, 0.84) (10.68, 9.73, 9.35) (0.31, 0.34, 0.38)
50 10 0.5 2 2 1 1 (0.98, 0.83, 0.83) (10.02, 9.63, 11.03) (0.36, 0.41, 0.86)

200 30 0.1 4 3 1 1 (1, 0.95, 0.95) (289, 286, 300) (5.1, 3.6, 3.9)
200 30 0.5 4 3 1 1 (1, 0.92, 0.92) (296,295,289) (5.3, 4.3, 4.7)
200 30 0.1 4 3 5 1 (1, 0.84, 0.84) (289, 316, 281) (5.1, 3.58, 3.93)
200 30 0.5 4 3 5 1 (1, 0.92, 0.92) (296, 298, 269) (5.3, 4.7, 4.5)

1000 80 0.1 10 5 1 1 (1,1.00,1.00) (20168,20593,19240) (42,48,50)
1000 80 0.5 10 5 1 1 (1,0.99,0.99) (20537,19931,22512) (42,69,81)
1000 80 0.1 10 5 5 1 (1,0.98,0.96) (20168,21567,20281) (41,81,89)
1000 80 0.5 10 5 5 1 (1,0.97,0.97) (20537,20282,20146) (42,106,151)
1000 80 0.1 10 5 10 2 (1,0.94,0.92) (20168,20991,21779) (41,80,91)
1000 80 0.5 10 5 10 2 (1,0.94,0.91) (20537,20300,22502) (42,97,121)

Table 1: Simulation of uncontaminated data. In parentheses, the results
respectively for classical algorithm, algorithm 1 and algorithm 2.

n p σ I J o1 o2 m − rand SSE time

50 10 0.1 2 2 1 1 (1, 1, 1) (10.3, 9.9, 9.8) (0.27, 0.17, 0.20)
50 10 0.5 2 2 1 1 (0.99, 0.98, 0.98) (10.1, 9.4, 9.9) (0.75, 0.48, 0.69)

200 30 0.1 4 3 1 1 (1.00, 0.99, 0.99) (316, 289, 284) (2.3, 2.1, 2.8)
200 30 0.5 4 3 1 1 (0.91, 0.98, 0.98) (317,283,293) (2.5, 3.0, 3.7)
200 30 0.1 4 3 5 3 (0.78, 0.79, 1.00) (3903, 250, 292) (3.2, 3.2, 4.3)
200 30 0.5 4 3 5 3 (0.67, 0.79, 0.94) (5692, 303, 232) (3.8, 6.3, 7.8)

1000 80 0.1 10 5 1 1 (1,1,1) (20672,20589,19240) (54,48,50)
1000 80 0.5 10 5 1 1 (0.99,0.99,0.99) (20642,19932,22507) (46,69,81)
1000 80 0.1 10 5 5 1 (1,0.99,1) (20644,21421,19876) (50,41,45)
1000 80 0.5 10 5 5 1 (1,0.99,0.99) (20794,21817,20096) (62,40,80)
1000 80 0.1 10 5 10 2 (0.95,0.93,1) (21913,22216,21012) (106,78,105)
1000 80 0.5 10 5 10 2 (0.89,0.93,0.99) (21401,20531,20723) (118,79,125)

Table 2: Simulation of partially contaminated data. In parentheses, the
results respectively for classical algorithm, algorithm 1 and algorithm 2.
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n p σ I J o1 o2 m − rand SSE time

50 10 0.1 2 2 1 1 (0.73, 0.99, 0.77) (187, 12, 163) (0.35, 0.16, 0.52)
50 10 0.5 2 2 1 1 (0.57, 0.99, 0.58) (236, 11, 54) (0.57, 0.22, 6.27)

200 30 0.1 4 3 1 1 (1, 1, 0.98) (500, 270, 275) (4.9, 1.8, 8.2)
200 30 0.5 4 3 1 1 (0.94, 1, 0.96) (300,278,263) (7.9, 1.9, 16.9)
200 30 0.1 4 3 5 1 (0.71, 1, 0.73) (6424, 280, 2307) (7.9, 3.5, 22.1)
200 30 0.5 4 3 5 1 (0.71, 0.90, 0.72) (6502, 2060, 2926) (10.3, 4.7, 30.5)

1000 80 0.1 10 5 1 1 (1,1,1) (21599,21172,21466) (41,44,150)
1000 80 0.5 10 5 1 1 (0.98,1,0.99) (21677,21426,22859) (42,40,109)
1000 80 0.1 10 5 5 1 (0.94,1,0.92) (32382,21611,28364) (77,84,96)
1000 80 0.5 10 5 5 1 (0.90,1,0.91) (36784,20564,25927) (100,84,169)
1000 80 0.1 10 5 10 2 (0.61,1,0.70) (77185,30800,61653) (151,98,134)
1000 80 0.5 10 5 10 2 (0.52,0.90,0.50) (84750,65838,69006) (245,117,228)

Table 3: Simulation of completely contaminated data. In parentheses, the
results respectively for classical algorithm, algorithm 1 and algorithm 2.

most of the variables were considered in the parameters of the Maastricht
treaty. Full data are displayed in Table 4. It is apparent that the 8 countries
have slightly different performances. Clustering can be used to explore the
information, and it is of great interest to be able to identify the outliers. In
particular it is questioned whether Italy can be thought of being an outlier
after standardization.

Country GDP INF DEF DEB INT TRB UNE
FRA 133.40 3.00 −1.50 46.60 10.40 −2.10 8.90
GER 138.80 3.40 −1.90 43.60 6.00 5.90 6.20
GBR 125.10 6.30 −1.30 34.70 11.10 −4.00 6.80
ITA 120.20 7.60 −11.50 100.50 11.90 −0.70 11.20
SPA 92.50 7.30 −3.60 46.80 14.70 −6.50 15.90
USA 176.20 4.30 −2.50 56.20 8.70 −2.70 5.50
JAP 142.00 2.20 2.90 69.80 7.40 1.90 2.10
CAN 166.70 3.30 −4.10 71.90 10.80 1.60 8.10

Table 4: Macroeconomic measurements for G7 countries

For these data the common choice for the number of groups is I = 3 and
J = 2.
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With algorithm 1 and automatic choice of the number of outliers we end
up setting o1 = 1 and o2 = 0. There is one single row outlier, which is
identified by the algorithm as being Italy.

The row-partition is: {GER, JAP}, {SPA}, {FRA, GBR, USA, CAN}.
while the col-partition is: {GDP, DEF,DEB,TRB},{INF,INT,UNE}. This
is well in agreement with Vichi (2000), with the only exception that Italy is
excluded from the partitioning.

If we use the algorithm 2, the automatic choice leads to set o1 = 1 and
o2 = 1. Italy is once again identified as being an outlier, but only for the
variable DEB. For the other variables, Italy is not considered as an outlier,
and the row-partition is: {GER, JAP}, {ITA, SPA}, {FRA, GBR, USA,
CAN}. Interestingly enough, this is exactly the same row partition obtained
in Vichi (2000). The column partition is the same as before, and once again
in agreement with Vichi (2000).

We can conclude that in this data set there is some evidence of Italy being
an outlier, possibly because of an exceptional high public dept (with respect
to GDP); but that this outlier does not affect the classical procedure. A
completely different conclusion will be drawn about the data in next section.

6.2.2 Metallic oxide analysis data

A sampling study was designed to explore the effects of process and mea-
surement variation on properties of lots of metallic oxide. The metal content
minus 80% by weight was recorded for two Types of metallic oxide raw ma-
terial, in respectively 18 and 13 lots, by two randomly chosen chemists for
each sample and two samples from each lot. Data reported in Table 5 come
from Bennet (1954), and were analyzed with a robust mixed model approach
by Fellner (1986); Zewotir and Galpin (2007).

This is a problem of confirmatory cluster analysis, with I = 2 and J = 1
(sample and chemist are zero-centered random effects).

The classical k-means procedure with k = 2 leads to a very bad solution,
in which lots 6 and 7 of Type 2 belong to one group and all the other rows
belong to another group. The same result is given by partitioning around
medoids (PAM). If we increase the number of groups and do classical k-
means or PAM with k = 3, there still is a badly behaved solution: one group
is made of two lots (6 and 7 of Type 2), and the rand-index for the other
rows is only about 0.17 in both cases.

With algorithm 1, we end up choosing o1 = 3 and o2 = 0. We mark lot
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17 of Type 1 and lots 6 and 7 of Type 2 as outliers. The rand-index for the
remaining variables is around 0.22.

Since there are at least two entirely corrupt rows, here Algorithm 2 is not
appropriate. On the other hand, we can use a combination of Algorithms 1
and 2.

By combining the algorithms we finally end up marking lot 17 of Type 1
together with 6 and 7 of Type 2 as entirely outlying (once again o1 = 3 and
o2 = 0 for Algorithm 1). On the other hand, we set o1 = 1 and o2 = 1 for
Algorithm 2, thereby letting lot 12 for Type 2, Sample 1, Chemist 1, have
an outlying measurement. The final rand-index is 0.24.

We now compare our detected outliers with the results of Fellner (1986)
and Zewotir and Galpin (2007). We generally agree with the results of Fellner
(1986), with the only difference that for lot 17 of Type 2 only the last four
columns are marked as outlying, and that there are no outlying measurements
for lot 12. This is particularly encouraging for us, since we manage achieve
a similar list of outliers without using the additional information given by
a-priori knowledge of the two row-groups (Type), and use of the random
effects Sample and Chemist. In this situation the two row-groups are not
well separated, and the outliers could be masked. Zewotir and Galpin (2007)
mark entire lot 17 of Type 1, together with 6 and 7 of Type 2 as outlying
They do not end up marking any column of lot 12 of Type 2, and additionally
mark lots 2,3,10,11 of Type 2; together with Chemist 1, Sample 2 for lot 4
of Type 2. Here the number of identified outliers is much higher.

We shall finally note that, being based on mixture models both Fellner
(1986) and Zewotir and Galpin (2007) procedures are more flexible than our
approach, and can do multiple marking: for instance both methods mark
Lot 6 of Type 2 as entirely outlying, and then the second measurement for
Sample 2 Chemist 2 is further marked as outlying.

6.2.3 Simultaneous clustering of genes and tissues

Our last example is about analysis of DNA microarrays. Data come from
Bittner et al. (2000), who finally analyzed the expression levels of 3613 genes
on 38 tissues biopsies; 31 cutaneous melanomas and 7 controls. Samples
come from male and female patients, aged 29 to 75. Bittner et al. (2000)
discuss the segmentation of the 31 tumor samples, obtaining two clusters of
12 and 19 samples validated through multidimensional scaling and by noting
different metastatic behavior between the two groups.
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Rocci and Vichi (2004) perform double clustering on this data set, finally
obtaining 4 row groups (one containing differentially expressed genes) and 2
groups of samples. The group of samples is slightly different than the one
in Bittner et al. (2000), being formed of 21 and 10 samples, the same groups
obtained by Goldstein et al. (2002) with hierarchical clustering methods.

If we allow for as few as o1 = 5, o2 = 5 outliers using Algorithm 2, we get
back the 12-19 clustering of Bittner et al. (2000). The natural choice for the
number of row groups in DNA microarray analysis is I = 3, with the aim
of separating down-regulated, up-regulated and not-differentially expressed
genes. Our choice is then I = 3, J = 2, o1 = 5 and o2 = 5 with Algorithm
2, finally getting 6 blocks (Figure 1), with centroid matrix in Table 6. As
hoped, we get two groups of differentially expressed genes, one up-regulated
and one down-regulated. By looking at the centroid matrix we can in fact
safely conclude that a first group of 925 genes is candidate to be up-regulated,
and also contributes to the column clustering; and another group of 396 is
candidate for down-regulation, and also contributes to the column cluster-
ing. Further, it seems like differential expression of genes in column group
1 is more marked (higher for up-regulated, lower for down-regulated) than
the differential expression for genes in column group 2, thus explaining also
the sample partitioning. Interestingly enough, the remaining bulk of 2292
genes is apparently not differentially expressed and simultaneously does not
contribute to the column clustering.

Our robust approach to double clustering allows then to recover the
Bittner et al. (2000) meaningful clustering for the samples, and furthermore
to simultaneously identify groups of genes that can explain the tissue parti-
tioning. Note that the number of genes identified by our and other methods
is too large for post-screening, as it often happens when applying clustering
methods instead of a multiple testing approach to DNA microarray data.

7 Conclusions

We provided two robust algorithms for double clustering, and an automatic
strategy for choosing the number of outliers. The algorithms are seen to
have good global robustness properties, and to be useful also in identifying
outliers from different perspectives. Robust double clustering seems to yield
clusters that are closer to the true structure than classical methods, as was
seen both in simulation and by real applications.
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Figure 1: Clustering of Bittner et al. (2000) data, with I = 3, J = 2, o1 =
o2 = 5, Algorithm 2.
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We focused here on hard partitions, but note that generalization to fuzzy
clustering or to coverings (overlapping clusters) is straightforward. In fur-
ther work we will permit the location of corrupt dimensions o2 to vary with
the identified row, finally allowing for a different number and location of
corrupt dimensions for each row outlier. A further robustification of the
methods would be given by using a robust statistic, like the median, for
estimation of the centroid matrix x̄ (Kaufman and Rousseeuw, 1990); even
if Garcia-Escudero and Gordaliza (1999) note that simply using the median
instead of the mean leads to the same global robustness properties in clus-
tering.
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Sample 1 Sample 2
Lot Type Chemist 1 Chemist 2 Chemist 1 Chemist 2

1 Type 1 4.1 4.0 4.3 4.3 4.1 4.0 4.1 4.0
2 Type 1 4.1 4.0 4.0 3.9 4.2 4.2 3.7 4.6
3 Type 1 3.5 3.5 3.4 3.6 3.4 3.3 4.0 3.5
4 Type 1 4.2 4.2 4.2 4.3 4.1 3.7 4.1 4.6
5 Type 1 3.7 3.8 3.3 3.3 3.2 3.1 3.1 3.2
6 Type 1 4.0 4.2 3.8 4.2 4.1 4.3 4.2 4.1
7 Type 1 4.0 3.8 3.8 4.0 3.6 3.8 3.9 3.8
8 Type 1 3.8 3.9 4.0 3.9 4.0 4.0 4.2 4.0
9 Type 1 4.2 4.5 4.3 4.1 3.8 3.7 3.8 3.8

10 Type 1 3.6 4.0 4.0 3.7 3.9 4.1 4.2 3.7
11 Type 1 4.6 4.6 4.0 3.4 4.4 4.5 3.9 4.1
12 Type 1 3.3 2.9 3.2 3.9 2.9 3.7 3.3 3.4
13 Type 1 4.5 4.5 4.0 4.2 3.7 4.0 4.0 3.9
14 Type 1 3.8 3.8 3.5 3.6 4.3 4.1 3.8 3.8
15 Type 1 4.2 4.1 3.8 3.8 3.8 3.8 3.9 3.9
16 Type 1 4.2 3.4 3.7 4.1 4.4 4.5 4.0 4.0
17 Type 1 3.3 3.4 3.9 4.0 2.2 2.3 2.4 2.7
18 Type 1 3.6 3.7 3.6 3.5 4.1 4.0 4.4 4.2
1 Type 2 3.4 3.4 3.6 3.5 3.7 3.5 3.1 3.4
2 Type 2 4.2 4.1 4.3 4.2 4.2 4.2 4.3 4.2
3 Type 2 3.5 3.5 4.2 4.5 3.4 3.7 3.9 4.0
4 Type 2 3.4 3.3 3.6 3.1 4.2 4.2 3.3 3.1
5 Type 2 3.2 2.8 3.1 2.7 3.0 3.0 3.2 2.7
6 Type 2 0.2 0.7 0.8 0.7 0.3 0.4 0.2 −1.0
7 Type 2 0.9 0.6 0.3 0.6 1.0 1.1 0.7 1.0
8 Type 2 3.3 3.5 3.5 3.4 3.9 3.7 3.7 3.7
9 Type 2 2.9 2.6 2.8 2.9 3.1 3.1 2.9 2.7

10 Type 2 3.8 3.8 3.9 3.8 3.4 3.6 4.0 3.8
11 Type 2 3.8 3.4 3.6 3.8 3.8 3.6 3.9 4.0
12 Type 2 3.2 2.5 3.0 3.5 4.3 3.7 3.8 3.8
13 Type 2 3.4 3.4 3.3 3.3 3.5 3.5 3.2 3.3

Table 5: Metallic Oxide Data
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Column Group 1 (19) Column Group 2 (12)
Row Group 1 (925) 0.76 0.50
Row Group 2 (2292) −0.08 −0.04
Row Group 3 (396) −1.28 −0.92

Table 6: Estimated centroid for Bittner et al. (2000) data, with I = 3, J = 2,
o1 = o2 = 5, Algorithm 2; with cardinalities in parentheses.
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