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Abstract

In this note we show how it is possible to overcome identifiability
issues related to the capture-recapture model My, in which capture
probabilities are allowed to be heterogeneous. Link (2003) highlighted
the non-identifiability of conditional likelihood parameterization and
concluded that one can not draw valid inference on the unknown
population size unless strong untestable assumptions are imposed on
the specific form of F. We show that the complete likelihood based on
the moments of F' and the unknown population size leads in fact to an
identifiable model. The seeming contradiction with the often invoked
equivalence of those two likelihood approaches is thus resolved.
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1 Introduction

Many authors have been investigating the inferential difficulties of one of
the simplest, yet hardest, statistical models for capture recapture data,
traditionally denoted as Mj. In model M, there are S capture occasions and
the capture probability of each animal is constant over all occasions but is
allowed to vary from animal to animal. The individual probability is assumed
to be distributed according to some unknown F. When no parametric
assumption is made on F' there are different available methodologies ranging
from the more traditional Burnham & Overton (1978) and Chao (1989) to
more recent likelihood-based solutions such as Norris & Pollock (1996) or
the Bayesian approaches in Basu & Ebrahimi (2001) and Tardella (2002).
However, none of the above can be considered a conclusive solution of the
problem. In fact, in some recent papers different cautionary notes have been
written to discuss on troublesome effects of the presence of heterogeneity
(Huggins & Yip, 2001; Hwang & Huggins, 2005) and warn against the
identifiability issues of the model (Huggins, 2001; Link, 2003; Holzmann et al.,
2006; Mao, 2008). In this short note we point out that those identifiability
issues are in fact related to the particular choice of likelihood adopted. In
fact while Huggins (2001), Link (2003) and Holzmann et al. (2006) use the
conditional likelihood we will show that the use of the complete likelihood
overcomes the main issue. It is usually argued that those likelihoods are
asymptotically equivalent (Sanathanan, 1972), hence working with either
one should not matter eventually. However, the famous result of Sanathanan
(1972, Theorem 2) is in fact valid under a technical condition which we
will show is not met in the case of M} model if no restriction is made on
F. The paper is organized as follows: in Section 2 we fix the notation and
model setup, in Section 3 we review the nonidentifiability arguments of Link
(2003) for conditional likelihood and moment based parameterization of F
and prove the identifiability of the same model under parameterization with
the complete likelihood. In Section 4 we give some brief concluding remarks.

2 Setup and notation

We start by writing down the complete probability structure of the
distribution of the underlying sequence of binary capture histories x; =
(i1, .oy ig) (1 = 1,2,..., N) which can be observed in a capture-recapture



experiment consisting of S trapping occasions for inferring the unknown
population size N. Some of the capture histories (let us say the first n)
are actually observed, while the remaining ones are not and they correspond
to the N — n animals for which S consecutive zeros are recorded. All the
capture histories are summarized in the binary N x S matrix X up to the
row index permutation. Model M) assumes independent and identically
distributed (i.i.d) binary capture outcomes for each animal

with subject-specific capture probability p; that is in turn assumed i.i.d. from
an unknown distribution F' with support in (0, 1). Hence,

S
N!
Pr(zi,...,@p, Tpiv, ..., xn|N, F) = . . [12.F)™
<N — 2 hm1 "k) Tz ! k=0
(1)
where ny denotes the number of subjects which have been captured exactly
k times and
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The distribution in (1) of the observable as well as unobservable sequences
conditionally on N and F' is equivalent to that of the capture counts ny
(k=1,...,5), which are in fact sufficient statistics for the model parameters
(N, F). Notice that n = Z,le nyand ng =N —n=N — Zle ny. Also,
from (1) we can recombine the complete likelihood L(N, F) as follows
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where the so called conditional likelihood L)(F) is factored out and only
conveys information about the unknown F' while the remaining part of the
expression L) (N, F) = g(N, Py(F)) is the only one which is functionally
dependent on the parameter of interest N and depends on F' only through
Py(F). Moreover the conditional likelihood has been reparameterized in
terms of the conditional probabilities

S
Py p(F) = % = Pr {w : Zg;j .y

S
> a > 0}, k=1,2,..,8
j=1

From the seminal work of Sanathanan (1972), the classical inferential
approach, followed also in Huggins (2001), Link (2003) and Holzmann
et al. (2006), consists of breaking down the estimation process into two
consecutive steps: in the first step one estimates F, or its corresponding
parameters, through the multinomial conditional likelihood L) (') obtaining
F and then plugs it in Py(F) which is the only feature of F involved in
Ly (N, F). This allows us to estimate the parameter of interest N through
a simple binomial structure with an unknown size parameter yielding the
so-called Horvitz-Thompson estimator which can be written in the explicit
form NPO(F) = #o(ﬁ)' In Link (2003) it was neatly pointed out that if no

assumption about F'is made then this procedure has the drawback of relying
on a likelihood function, L (F'), for which Py(F) and hence N are strongly
unidentifiable.

There is a convenient alternative parameterization which we now discuss.
The multinomial structure of the likelihood has been written down in terms
of the S+1 binomial mixture probabilities P(F') = (FPy(F), Pi(F), ..., Ps(F))
which live in an S-dimensional subspace of the simplex constrained by (2).

It has long been recognized in binomial mixture literature (Rolph, 1968;
Lindsay, 1995) and more recently in the capture-recapture context (Yoshida
et al., 1999; Tardella, 2002; Link, 2003) that the probabilities P(F') are in

one-to-one correspondence with the first S moments of F' through the relation

PR =3 e ) ) k=0

where m,(F) = f[o g P'F (dp) is the ordinary r-th moment of F. The
different parametrization in (5), involving alternative S 4 1 parameters



(Po(F), Py (F)) and lying in a S-dimensional space, is also in one-to-one
correspondence with the original P(F).

We will now review the main arguments leading to the non-identifiability
of L(¢)(¥) and see how the problem can be overcome by relying on the original
complete likelihood L(N, F') as in (6), with the parameterization based on
the first S moments of F'.

3 Non identifiability of the conditional and
identifiability of the marginal likelihood

First of all we recall that the first source of nonidentifiability of the
nonparametric mixture of binomials has already been clarified by Rolph
(1968), where it is clearly stated that the identifiable features of F' must
be in one-to-one correspondence with the first S moments. This means that
when no parametric constraints are considered there is a class of (likelihood)
equivalence related to the so called moment class i.e. the class of all
distributions F’ which have the same first S moments. The function F itself
is not wholly identifiable.

Link (2003) showed that the use of the conditional likelihood for
estimating Py(F') suffers from a different identifiability issue that results in
an invalid inference for the unknown population size of the M; model. He
showed how, for any mixing distribution F' with corresponding Py(F') < 1,
there is an infinite collection of other mixing distributions {G., = vF + (1 —
¥)do;y € (0,1)} for which L) (F) = L) (G,), where &y is the degenerate
distribution at 0. The proof was easily carried out by noting that the first S
moments of G, were linearly related to those of F' by the relation

mi(Gy) = ymy(F) k=1,..,8

and hence
Py(G,) = vPy(F) k=1,...,8
so that
S S
1= FRy(G) :Zpk(G7> :Z’ka(F> = (1 = Ry(F))
k=1 k=1



and hence the ratios defining the corresponding conditional probabilities are
identical:
1= P(Gy) 1= FR(F)

Pox(G,) = = Pl x(F).

Link (2003) concluded that there is no way of making inference on model M,
unless one is willing to overcome the above indeterminacy of Py(F') due to the
flatness of the conditional likelihood corresponding to the equivalence class
by admitting untestable model assumptions on the F' distribution. We will
argue now that his conclusion is somehow overstated and a fairer conclusion
would be simply that one cannot rely on the usual two-step procedure based
on the conditional likelihood for estimating B, and on the Horvitz-Thompson
rule N By = %0 to make inference on .

First of all let us show in Figure 1 a simple numerical check on the fact
that the complete likelihood does not appear to have flat regions for Py — 1.
We take the same numerical example in Link (2003) and show that when ~
runs in (0, 1) while the conditional likelihood is flat the marginal likelihood
is not. Note also the fact that when ~ approaches 1 the complete likelihood
starts decreasing eventually.

Figure 1 is in seeming contradiction with the results of Sanathanan (1972),
who showed that both approaches to inference are asymptotically equivalent.
The fundamental relationship between the conditional probabilities of
positive counts and the zero-count unconditional probability, both depending
on a common parameter vector, then suggested Sanathanan (1972) to solve
the inferential problem via the conditional likelihood for simplicity reasons.
In this recapture context the asymptotics is understood as the behaviour of
the model as N — oo. We now resolve this seeming contradiction by noting
that the regularity conditions invoked by Sanathanan (1972) to prove the
asymptotic equivalence of conditional likelihood and complete likelihood are
in fact not met in the general case of model M}, when no assumption is made
on F'. We report the original result (Sanathanan, 1972, Theorem 2, p. 147)
with a slightly different notation.

Theorem 1. [Sanathanan (1972)] Suppose that Ny and o are the true
parameter values and both the following conditions hold:

o (A1) At every admissible value of A the functions A\ — Pi(\) admit
continuous first-order partial derivatives



Likelihood as a function of y
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Figure 1: Complete (red solid line) and conditional (blue dashed) likelihood
mapped as a function of ~.
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The reason why this theorem can not be used in model M; when no
assumption is made on F' is that (A2) does not hold and it can be just shown
with the arguments in Link (2003). Indeed, take Ao = (m1(F),...,ms(F))
and \* = (m1(G,),...,mg(G,)). For all § > 0 one can always take v > 0
small enough such that from (7) it follows that

s
. Pe)k(Xo)

f E Py (X)) log ————~ = 0.
\A*gl\o|>6 — (04(A) log Py k(M)

Notice that Sanathanan (1972) borrowed the condition (A2) from Rao (1965)
which in fact refers to it as strong identifiability condition.

We now formally prove that using the complete likelihood overcomes the
identifiability problem and can then allow a valid inference on N.

Theorem 2.  Assume N > 0 and (my,...,mg) live in the interior of
the space of moments of the class of F distributions with support on [0, 1].
The complete likelihood is identifiable within the class of F' distributions with
unique first S moments.

Proof: Suppose (N, F') and (N, F’) are such that (N, m4, ..., mg) are not
all equal to (N',m],...,m}). Then we will show that there exists at least
one binary data configuration which yields the likelihood ratio to be different
from 1.

When (mq,...,mgs) # (m},...,mys) it can be shown that
(N, Py(F),...,Ps(F)) are not all equal to (N', Py(F’),..., Ps(F")) since
Py(F),..., Ps(F) is one-to-one with my, ..., mg. Moreover, we have

L(N,F) _ NIN'= 35 ny)! 15[ [Pk(F) rk
LN F) ~ NN =Y )l L4 (PP |

Without loss of generality assume N > N'. If Py(F) < By(F"), then let us
consider the data corresponding to no capture, i.e. n=n; =...=np = ... =
ng = 0. We have
LN.F) _ P(F)"
L(N',F") — Py(F")N
If Py(F) = Py(F') and N > N’| the same inequality holds taking n = 1.

< 1.
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If Po(F) = Py(F') and N = N’ then there must be at least one & > 0
such that Py(F) # Pi(F"). Let n, = N = N’, we have

L(N,F)  P(F)"
L(N',F")  Py(F))N

41,

If Py(F) > Py(F') and N = N’ we have as above that, letting ng = N = N’

L(N,F)  R(F)N
L(N',F")  Py(F")N

£,

It remains for us to show what happens when Py(F) > PFy(F’) and
N > N’. Since the cell probabilities sum to 1, there must also be at least one

k > 0 such that Py(F') < Pi(F'). Let f(n) be the likelihood ratio obtained
when n, = n. We have that when there is no capture n =n, =0

BB Py(F)N—N (M) v

0= P(F)

= Bo(F)" =

while, if we observe just one unit at the k-th occasion, i.e. n = nj, = 1 then

_N RO AE) N ey (PO(F))N"1 Py(F)
N’ PO(F/>N’—1 Pk(F’) N’ 0 PO(F') Pk(F/)'

If either f(0) # 1 or f(1) # 1 we have the thesis. Assume f(0) = f(1) = 1.
We have that when n = nj, = 2 (two animals captured, both twice)

f(1)

1O = i P () BBy

By using the equation f(0) = 1 the above expressions can be conveniently

A\ Y
simplified. Since f(0) = 1, we have Py(F)N-N = (i“(fé;;) , so that

N' \ Py(F) ) P.(F")

N(N —1) (Ry(F') Pu(F)\*
f(2> = N/(N/ _ 1) (PO(F) Pk(F/)) ‘
)

= N (Po(F’)> Pu(F)

Now, since f(1) =1 and (N/N’")? # (N(N —1))/(N'(N' — 1)) we have that
f(2) # 1, and hence the thesis.



4 Concluding remarks

In this note we have just investigated from a theoretical perspective the
problem of the identifiability of the parameters involved in model M, when
no restrictive assumption is made on the distribution of the heterogeneous
probabilities. We have shown how model M, can be safely dealt with
through the complete likelihood, thus overcoming the nonidentifiability issues
raised by Link (2003). In fact, in a very recent note Mao (2008) highlighted
that somehow identifiability can also be bypassed through the conditional
likelihood itself. Indeed he shows that by solving some extremal problem one
can derive a useful lower bound estimate of Py(F) and hence N within the
class of distributions sharing those moments which match with the estimated
conditional probabilities P(C),k(F) (1<k<S).

We are currently investigating in more depth the relationship between the
advocated solution of maximizing the complete likelihood and the approach
of Mao (2008). Notice that in both cases we end up with a consistent
estimate of the true Ny and a comparison in terms of efficiency would also be
very interesting. Another competitor to be compared with is the Bayesian
solution already available from the reference Bayesian approach in Tardella
(2002) which has already proved itself competitive in terms of relative mean
square error when compared to other classical, parametric and nonparametric
approaches.
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