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1 Introduction
The main goal of this work is the proposal and critical analysis of some
univariate hierarchical space-time Bayesian models for mapping the concen-
tration of three pollutants in the air shed of the city of Taranto.
The municipal area of Taranto (southern Italy) is characterized by high envi-
ronmental risks due to the massive presence of industrial sites with environ-
mental impacting activities along the NW boundary of the city conurbation.
Such activities include iron production (one of the largest plants in Europe),
oil-refinery, cement production, fuel storage, power production, waste mate-
rials management, mining industry and many others. Some other environ-
mental impacting activities are more deeply integrated within the urban area
and have to do with the presence of a large commercial harbor and quite a
few military plants (a NATO base, an old arsenal and fuel and munitions
storages). These activities have effects on the environment and on public
health, as a number of epidemiological researches concerning this area recon-
firm ([9]). In the context of an agreement between Dipartimento di Scienze
Statistiche - Università degli Studi di Bari and ARPA Puglia, air quality
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data for the municipal area of the city of Taranto were provided, belonging
to different monitoring networks pertaining to the regional and municipal
government and counting up to 25 monitoring stations on the whole ([9]).
Pollutants continuously monitored by the stations include sulphur dioxide
(SO2), nitrogen oxide (NOX) and nitrogen dioxide (NO2), carbon monoxide
(CO), benzene, PM10 and ozone. This study is focused on PM10, SO2 and
NO2 concentrations.
Only six monitoring stations were considered, those producing the longest
time series for the three pollutants. In figure1 their locations are reported.
NO2 is a brownish, highly reactive gas that is present in all urban atmo-
spheres. This pollutant can irritate the lungs, cause bronchitis and pneu-
monia, and lower resistance to respiratory infections. The major mechanism
for the formation of NO2 in the atmosphere is the oxidation of nitric oxide,
which is produced by most combustion processes. PM10 (particles measuring
10µm or less) identifies those particles likely to be inhaled by humans and
to enter deep into alveoli, thereby potentially impacting on health. PM10

sources are connected to both human and natural activities. A significant
portion of PM10 is generated from a variety of human activities including
agricultural operations, industrial processes, combustion of wood and fossil
fuels, construction and demolition activities, and entrainment of road dust
into the air. Natural (nonanthropogenic or biogenic) sources also contribute
to the overall PM10 problem. These include windblown dust, sea salt and
wildfires. SO2 is a colorless, reactive gas. It is released primarily from burn-
ing fuels that contain sulfur (like coal, oil and diesel fuel). Stationary sources
such as coal- and oil-fired power plants, steel mills, refineries, pulp and paper
mills, and nonferrous smelters are the largest releasers.
In this paper we propose a hierarchical spatio-temporal modeling approach
to describe and map daily mean concentrations of PM10, SO2 and NO2. The
model structure describes explicitly the spatial and temporal relationships
within the data and those between pollutants and meteorological variables.
This feature allows a better understanding of the pollutants diffusion and
generating processes that is crucial to infer of their sources and effects on
human health.

Besides, this work is part of a much broader plan, realized with the in-
tent of comparing two different approaches: three separate univariate anal-
yses, one for each pollutant, combining spatial and temporal aspects and a
multivariate approach, wherein all three pollutants are modelled simultane-
ously. The same data have been analyzed in [8], there the authors adopted
a multi-step procedure based on the combination of a multivariate hierarchi-
cal spatio-temporal model within a Bayesian framework proposed by [7] and
an external missing data imputation procedure based on spatial interpola-
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Figure 1: Dislocations of the six monitoring stations

tion, the latter carried on in the Bayesian framework too. The multivariate
model, characterized by the use of time varying weather covariates and a
semi-parametric spatial covariance structure, does not allow a complete and
satisfactory handling of estimates’ uncertainty, as it requires a preliminary
sparse missing data imputation step outside the model estimation procedure.
Here we use a full Bayesian approach as it allows to include missing data im-
putation within the model estimation step. Estimates are obtained via Monte
Carlo Markov Chain (MCMC) routines implemented in WinBUGS.
Our starting point is the model proposed by [10] that we modify and ex-
tend to fit our situation. The paper is organized as follows. In section 2 the
model is described. Some exploratory analyses and detailed data description
together with the final models for each pollutant are illustrated in section 3.
Results are discussed in section 4 and some concluding remarks are given in
section 5

3



2 The general model
Stage 1: observed data model
Suppose that a pollutant (Y ) has been observed at S spatial locations and
T time points, along with a set of q meteorological variables. Let Yts denote
the observed level of pollutant on day t (t = 1,...,T ) at spatial location s (s
= 1...,S ), let (C1s, C2s) be the spatial coordinates of site s and let Xt be the
q-dimensional vector of meteorological variables on day t.
At the first level of hierarchy, conditional on the mean (µts) and the mea-
surement error variance (σ2

s), observations are modelled as :

Yts|µts, σ2
s ∼ N(µts, σ

2
s) (1)

and
µts = γ1C1s + γ2C2s + X

′

tβ + θt + εts (2)

Parameters γ1 and γ2 capture the large scale linear spatial trend, while
vector β captures the dependence of pollutant levels on the covariates. θt
represents a temporal random effect and the vector εt. = (εt1, εt2, ..., εtS) de-
scribes the spatial random effects at time t.

Stage 2(a): temporal model
The time dynamic is represented as a random walk:

θt = θt−1 + ωt, ωt ∼ N(0, σ2
θ) (3)

Stage 2(b): spatial model
We assume that the spatial and temporal processes are separable and that at
each time t, the vector εt. = (εt1, εt2, ..., εtS) is a zero mean, isotropic Gaussian
process with S × S correlation matrix Σ

εt.|σ2
ε ,Σ ∼MVN(0S, σ

2
εΣ) (4)

The sill parameter σ2
ε plays the role of the zero-distance variance. The ss’

entry of the correlation matrix represents the correlation between sites s and
s’ assumed to be exponential:

Σss′ = exp (−φdss′) (5)

where dss′ is the distance between sites s and s’.
Stage 3: hyperpriors
Model hierarchy is completed by prior specification for the hyperparameters.
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A Gaussian prior is assumed for the regression coefficients γ1, γ2 and βi (i =
1,...,q). The final settings for the three models are reported in detail in the
appendix.

3 Data processing and variable selection
The data set contains validated data for years 2005-2007, available for only 6
monitoring stations managed by the Apulia regional government, all equipped
with analogous instruments either reporting hourly, two-hourly or daily mea-
surements. Hourly observations of several meteorological variables (including
temperature, relative humidity, pressure, rain, solar radiation, wind speed
and direction) are also available for the same time period and for 3 weather
monitoring stations. Our main objective is to integrate pollution and me-
teorological data in order to summarize the behaviour of pollution diffusion
processes over the area of the municipality for the study period (1st Jan-
uary 2005 - 31 December 2007). As already mentioned we focus on three
pollutants PM10, NO2 and SO2.

Preliminary data analysis involved addressing quite a few data problems:
first we obtained a homogeneous time scale for all monitoring stations trans-
forming the data into daily averages. Normalizing transformations were then
applied in order to reach approximate marginal Gaussianity: the square roots
of the logs of SO2 and the logs of PM10 and NO2 daily averages were consid-
ered. In Table 1 a summary of the missing data situation is reported. Missing
data are due to both different operational periods of the stations (staircase
missingness) and occasional malfunction of the sensors (sparse missing data).

Archimede Carcere PaoloVI SS7wind Statte Talsano
PM10 321(29%) 98(9%) 144(13%) 184(17%) 199(18%) 23(2%)
SO2 183(17%) 109(10%) 176(16%) 206(19%) 93(8%) 25(2%)
NO2 209(19%) 120(11%) 202(18%) 214(20%) 159(14%) 71(7%)

Table 1: Missing daily averages (%)

Finally available weather data are characterized by gaps and unreliable
measurements; a unique daily weather database at the city level was then
obtained combining the 3 stations data. As a first step one of the three sta-
tions was chosen as the main source of data. More reliable pressure and solar
radiation measurements recorded by each of the other two monitors were
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considered. Then daily averages were obtained by arithmetic mean (temper-
ature, relative humidity, pressure), geometric mean (wind speed, solar radi-
ation), circular mean (wind direction), mode (wind direction - quadrants),
maximum (wind speed), sum (rain). Missing daily values were imputed by
averaging hourly data recorded 12h before and after the gap. Only rain lev-
els were imputed as averages of those recorded at the other two stations.
Not all variables were considered like possible covariates for the construction
of the models. Their relevance as covariates was verified by fitting linear
regression models: conditional OLS estimates were obtained for the normal-
ized pollutant concentration levels at the 6 sites with weekday and month
calendar variables and all meteorological covariates as explanatory variables.
Concentration levels were overall significantly affected by the effects of week-
day, calendar month, temperature, humidity, rain, maximum wind speed and
wind direction quadrant. To these, we added the spatial coordinates of sites.

4 Results
In the proposed model the missing data problem can be easily solved as
missing data can be seen as a further set of parameters to be estimated via
MCMC.
We carried on separate analyses for each pollutant. Starting from the model
described in section 2 we verified MCMC convergence for several model struc-
tures. Two separate chains of 50000 iterations starting from overdispersed
initial values were run for each model. A thinning interval of 25 and a burn-in
period of 20000 iterations were applied. Convergence was assessed by visual
inspection of the chains sample trace plots, and by computing the Gelman
and Rubin, Geweke and Raftery and Lewis statistics.
At first, temperature, humidity, rain and maximum wind speed were used
as covariates for the three pollutants. After several long runs with unsatis-
factory results, in particular for the convergence of the variance parameters
chains, the addition of wind direction categorized into quadrants lead to con-
vergence of the estimation process for the mean terms of the models for PM10

and NO2. For the SO2 model also the calendar month was added. All three
models showed convergence problems as far as the time dynamic was con-
cerned. We then modified the time dynamic by replacing the random walk
in (3) with the following autoregressive model:

θt = φ1θt−1 + ωt, ωt ∼ N(0, σ2
θ) (6)
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This choice allowed the convergence of the estimation algorithm for the three
models.

The final models point out the role of covariates in determining pollu-
tants levels. Increases in the rain amount and maximum wind speed reduce
PM10, on the contrary temperature and relative humidity have positive coef-
ficients, in accordance with the PM10 production process encouraged by high
temperatures during warmer seasons. Also the wind direction is significantly
related to the PM10 concentration, suggesting the presence of a transport
phenomenon of particulate. Fitting the same model to NO2 shows no sig-
nificant influence of the rain amount and wind direction, while increases in
temperature and relative humidity contribute to the pollutant’s production,
following a winter to summer reduction of its level. The model for SO2 high-
lights how the rain amount and the calendar month have no influence on the
pollutant level, while temperature, relative humidity and wind speed and
direction contribute significantly. Spatial coordinates play the same role for
PM10 and SO2, showing a positive however very small correlation with the
pollutants level, suggesting the presence of a positive gradient in the NE di-
rection complying with the possible effect of the sea breeze on the reduction
of the levels of these two pollutants. While as far as NO2 is concerned the
spatial behavior is less clear, little variation can be found in the SW direction.

4.1 Prediction

The last part of this work is dedicated to obtain spatial predictions of con-
centration levels for the three pollutant at unmonitored locations using the
proposed model. Prediction of the pollutant level at site s’ and time t is ob-
tained by sampling from the posterior predictive distribution p(µs′t|Y ) whose
components are:

µts′|Y = (γ1|Y )C1s′ + (γ2|Y )C2s′ +X
′

t(β|Y ) + (θt|Y ) + (εts′|Y ). (7)

Justification of the additive form of the predictive distribution is con-
tained in [10]. Samples from the predictive distribution p(µs′t|Y ) are ob-
tained via MCMC. The predictive distribution is used to interpolate the
daily normalized pollutant fields on a 400 points grid. These additional
prediction locations belong to a 14×31 square lattice with 700m cell side,
covering the whole area of interest. We obtained 200 simulations at each of
the 400 grid-points on each of the 1095 days. Daily expectations and simu-
lations summaries (means, standard errors, upper and lower 95% credibility
interval limits) for the grid points closest to the six monitoring stations (see
figure 2) are considered as the final output for the evaluation of the modeling
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Figure 2: Locations of the six monitoring stations and of the nearest grid points

strategy. In figure 3, the time dynamic of predicted and observed values to-
gether with the 95% credibility bounds are reported. The large majority of
observed normalized daily concentrations fall inside the corresponding credi-
bility intervals, showing an over-all compliance of the observed data with the
simulations from the estimated predictive distribution.
In order to assess model’s ability in predicting pollutants levels we consider
the following validation statistics:

• root mean squared error (RMSE)

RMSEs =
√

(MSEs) =

√∑T
i=1(Yts − Ŷts)2

T
,

where Yts represents the observed normalized pollutant concentrations
at time t and monitoring location s and Ŷts represents predictions at
time t and the nearest grid-point;
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Figure 3: Normalized observed pollutant concentrations (blue line) for the Talsano
monitoring station and those predicted at the nearest gridpoint (black
line); dotted red lines are 95% credibility intervals. Year 2007.
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• CR1 (Carroll and Cressie, 1996)

CR1 =
1

S

S∑
s=1

{
1

T

T∑
t=1

(Yts − Ŷts)
σ̂ts

}
allows us to verify the unbiasedness of the predictors, it should be as
close as possible to 0;

• CR2 (Carroll and Cressie, 1996)

CR2 =
1

S

S∑
s=1

{
1

T

T∑
t=1

(
(Yts − Ŷts)

σ̂ts

)2} 1
2

verifies the accuracy of the mean squared prediction error and should
be as close as possible to 1.

Tables 2, 3, 4 show RMSE values for the three pollutants, computed at the
monitoring stations and over different time windows.

Years Root Mean Squared Error
Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.4476 0.3801 0.5920 0.5955 0.3225 0.4905
2006 0.3427 0.3695 0.4570 0.4499 0.2428 0.3545
2007 0.3526 0.3062 0.4044 0.3555 0.1770 0.2570

2005 - 2006 - 2007 0.3874 0.3557 0.4966 0.4844 2578 0.3813

Table 2: RMSE’s for the six monitoring stations over four time windows: SO2

Years Root Mean Squared Error
Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.5881 0.5688 0.6638 0.5357 0.5226 0.5702
2006 0.6603 0.6554 0.6400 0.5422 0.5191 0.5437
2007 0.6326 0.4188 0.4558 0.5581 0.7772 0.3339

2005 - 2006 - 2007 0.6276 0.5617 0.6021 0.5478 0.6039 0.4933

Table 3: RMSE’s for the six monitoring stations over four time windows: NO2

The models prediction performance in terms of pollutants levels is satisfac-
tory, RMSE values are small for all sites and time windows, as RMSE’s are
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Years Root Mean Squared Error
Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.5152 0.3722 0.2778 0.4510 0.2201 0.1179
2006 0.5180 0.2164 0.2038 0.6041 0.2499 0.1064
2007 0.4114 0.2853 0.3231 0.4884 0.2975 0.2495

2005 - 2006 - 2007 0.4939 0.2997 0.2699 0.5172 0.2584 0.1862

Table 4: RMSE’s for the six monitoring stations over four time windows: PM10

Year Index SO2 NO2 PM10

2005 CR1 -0.2350 -0.1385 0.0163

CR2 1.7630 1.3678 2.2205

2006 CR1 -0.0003 -0.1474 -0.0931

CR2 1.6729 2.1789 2.3856

2007 CR1 -0.0442 0.0909 0.6749

CR2 1.4732 2.3566 3.0347

2005 - 2006 - 2007 CR1 -0.0912 -0.0798 0.1885

CR2 1.6526 2.0071 2.6039

Table 5: CR1 and CR2 computed between monitoring stations and nearest grid
points, over several time windows, for all pollutants

on the same scale as the normalized input data. In Table 5 CR1 and CR2

values are reported. The best pollutants’ level prediction is obtained for SO2

in 2006, for NO2 and PM10 in 2005. While an overall slight tendency to
overstimation is shown when analyzing the three years at once for SO2 and
NO2 (CR1 < 0).

To analyse the model behaviour with respect to the time dynamic, we
examine the autocorrelation functions for observed concentrations and those
predicted at the nearest grid point ACF’s and PACF’s are shown in figure 4
and 5 respectively for the Archimede monitoring station. It must be noticed
that observed ACF’s and PACF’s estimates are obtained from time series
with a large number of missing data and can thus be unreliable. However re-
sults are satisfactory on the whole. The autocorrelation structure of observed
time series is well reproduced by all three models, while more discrepancies
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Figure 4: ACF’s of normalized pollutants and of does predicted at the nearest grid
point for the Archimede monitoring station (red bars)

can be found in the partial autocorrelation.
As far as the spatial prediction is concerned we report some examples

of maps for each pollutant and the corresponding 95% credibility intervals
(figures 6 - 11).

In the PM10 and SO2 maps the influence of the wind direction appears
clearly, while NO2 flatter surface seems less influenced by this meteorological
condition. This is in accordance whith what was previously noticed concern-
ing the significance of spatial coordinates and the influence of the sea breeze.
All maps show very little spatial variation, however they present highest
pollutants levels where expected, according to experts opinion. Examining
credibility intervals for the three pollutants shows that while estimates of
PM10 and NO2 concentrations are acceptable, this is not the case for the
normalized SO2. The credibility intervals are wider then those obtained for
the other two pollutants and their lower limit is often negative, which is quite
unrealistic. This maybe due to a lack of the model in capturing the large
number of zeros recorded for SO2.
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Figure 5: PACF’s of normalized pollutants and of does predicted at the nearest
grid point for the Archimede monitoring station (red bars)

5 Concluding remarks
In this work we analyze the behavior of a full Bayesian separable space-time
hierarchical model adapted to predict normalized pollutant concentrations
(PM10, NO2, SO2) on a fine grid spanning the Taranto municipal area. The
main advantages of the approach consist in its capability to easily handle
missing data, properly reproduce the time dynamic and capture spatial in-
formation from the data. From the physical point of view the predicted maps
have acceptable interpretation, however results are not completely satisfac-
tory for SO2. Furthermore, results obtained for the three univariate models
are not really comparable with those in [8], where a multivariate approach
is considered. As the multivariate hierarchical model requires a considerable
computational effort to be estimated, we believe that further investigations
are required giving more attention to the computational efficiency of the
estimation procedure.
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Appendix: Priors settings
In this appendix we report the priors and their settings as implemented in
WinBugs for the estimation of the three final models. In the mean term
of the model, described in equation (2), γ1, γ2 are the coefficients of spa-
tial coordinates and βtemp, βrelum, βwind, βrain and βwinddiri , i = 1, . . . , 4 are
the coefficients of temperature, relative umidity, wind speed, rain and wind
direction respectively. For the SO2 we added the calendar month whose co-
efficients are denoted by βmonthj , j = 1, . . . , 12. The error term (one for each
monitoring station) has precision parameter τs = 1

σ2
s
.

The temporal structure described in (6), has parameters φ1 and τ1 = 1
σ2
θ
. The

exponential spatial structure in (4) is ruled by two parameters: the range φsp
and the sill σ2

sp = 1
τsp

of the covariance function.
For computational reasons we adopted lognormal distributions to generate
precisions (τ1, τsp and τs). This choice is purely computational and linked
to the way WinBugs generates gamma and lognormal variates. The latter
allow for a a more effective and simpler tuning of the initial values and, with
the proper choice of hyperparameters, generates values that mimics gamma
variates.
In the three models the φ1 parameter has been generated from a normal
distribution with very small precision centered on the maximum likelihood
estimate of a AR(1) obtained by stacking the six monitoring stations record-
ings in a single series.

PM10 and NO2

γ1 ∼ N(0, 0.0001) γ2 ∼ N(0, 0.0001) (8)
βtemp ∼ N(0, 0.0001) βrelum ∼ N(0, 0.0001) (9)
βwind ∼ N(0, 0.001) βrain ∼ N(0, 0.001) (10)

βwinddiri ∼ N(0.0, 0.0001) i = 1, . . . , 4 (11)

τs ∼ LogN(0, 0.22); s = 1, . . . , 6 (12)

The AR(1) hyperparameters for the NO2 are set as:

φ1 ∼ N(0.7068, 0.00001) (13)

τ1 ∼ LogN(0, 0.22) (14)

for the PM10 AR(1) model component we have:

φ1 ∼ N(0.7438, 0.01) (15)
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τ1 ∼ LogN(0, 0.22) (16)

φsp ∼ N(0, 0.0001)I(0, 1) (17)

τsp ∼ LogN(0, 0.22) (18)

SO2 As far as the SO2 model is concerned we have the same hyperparame-
ters structure as in the PM10 and NO2 models with respect to all the shared
covariates, the calendar month coefficients are set as:

βmonthj ∼ N(0.0, 0.0001), j = 1, . . . , 12 (19)

and AR(1) parameters are:

φ1 ∼ N(0.63, 0.00001) (20)

τ1 ∼ LogN(0, 0.22) (21)
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Figure 6: Log PM10 July 1, 2005 map
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Figure 7: Log PM10 July 1, 2005, 95% Credibility Interval maps
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Figure 8: Log NO2 July 1, 2005 map
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Figure 9: Log NO2 July 1, 2005, 95% Credibility Interval maps
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Figure 10: Transformed SO2 concentration December 16, 2007 map
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Figure 11: Transformed SO2 July 1, 2005, 95% Credibility Interval maps
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