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Abstract

In this paper we propose a predictive Bayesian approach to sample size determination and re-

estimation in clinical trials, in the presence of multiple sources of prior information. The method

we suggest is based on the use of mixtures of prior distributions for the unknown quantity of

interest, typically an unknown effect or an unknown effects-difference. Methodologies are developed

using normal models with mixtures of conjugate priors. In particular we extend the sample size

determination analysis of [1] and the sample size re-estimation technique of [2].

1 Introduction

In clinical trials one is often interested in assessing the efficacy of a treatment (phase II) or the

superiority of a new treatment over a standard therapy (phase III). This problem is typically

formalized as a (one-sided) testing problem on an unknown parameter, θ, that denotes the unknown

treatment effect or the unknown effect-difference respectively. Here we are interested in sample size

determination (SSD) for this testing problem. From a Bayesian perspective, efficacy or superiority

of a treatment is typically assessed by considering the posterior probability that θ exceeds a minimal

clinically relevant threshold, δ. If this posterior probability is sufficiently large, the experiment is

considered successful. SSD for this problem is addressed by selecting the minimal number of units

so that, before the experiment is performed, the chances of obtaining a successful experiment are

sufficiently large.

In this context one of the crucial aspects is the choice of the probability distribution of the

data in pre-posterior calculations. Two main approaches can be used: conditional and predictive.

In the former, pre-posterior computations are made with the sampling distribution of the data,

for some fixed design value of the unknown parameter; see for instance [3], [4], [5] and [1]. The

conditional approach is often criticized for yielding locally optimal sample sizes, which do not
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account for uncertainty on the design parameter value (see [6] for discussion). Hence, we prefer

here a predictive approach. Uncertainty on the design values of the parameter is therefore modeled

through a probability distribution. This distribution is used for averaging the sampling distribution

of the data and for obtaining the prior predictive distribution, employed for sample size computation

(see for instance [7]). A possible compromise between these two approaches is proposed in [8] and

in [9]: according to a mixed Bayes-frequentist methodology, the prior uncertainty on the unknown

parameters is taken into account only for the design, whereas a standard classical test statistics is

used for final inference. However we focus here on a fully Bayesian approach to SSD that models

prior uncertainty on the design value when planning the experiment and combines preexperimental

informationwith data for final inference.

In general the present work is related to the literature on Bayesian experimental design. For

general reviews and discussions see [6] and [10]. More specifically for Bayesian SSD see also [11],

[12] and [13]. In [13], [14] and [15] a robust Bayesian approach is considered.

As far as the choice of the prior distribution of the unknown parameter for computation of the

posterior probability is concerned, the method has been implemented and discussed using both

noninformative and informative priors. For references and discussion see, for instance, [16], [5].

In this paper we suppose that multiple sources of prior information on θ are available, for

instance, opinions of several clinical experts or results from historical studies. This framework has

been recently considered by [1] for Phase II clinical trials with binary endpoints. As a prior for

θ, the Authors proposed a mixtures of conjugate prior distributions, each representing information

from a single source, with weights proportional to the degree of pre-experimental “reliability” of

each source.

Here we propose an extension of the analysis in [1]. Specifically:

• we consider the predictive approach for pre-posterior sample size computations;

• we adopt the two-priors approach to SSD. In this regard see, for instance, [17], [18], [19], [20]

and [7];

• we present results assuming normal endpoints (Section 3.1) and illustrate an application

(Section 3.2).

The presence of multiple sources of prior information, motivates an adjustment of the sample sizes

set at the start of the trial after that a portion of experimental outcome has become available.

Hence, in addition to the above three points, we also consider the sample size re-estimation (SSRe)

problem. We follow a predictive Bayesian approach close to the one proposed by [2] and based on

the expected probability of ending up with a successful trial, given the information provided by the

results of the interim analysis. One attractive feature of this approach is that results of the interim

analysis allows for an update of the weights of the components of the mixture itself.
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The outline of the paper is as follows. In Section 2 we introduce the setup and some notation.

In Section 3 we present the predictive approach for SSD with correspondent results in the case

of the normal model (Section 3.1). This methodology is illustrated in Section 3.2 for planning

a trial focused on the effect of magnesium in acute myocardial infarction, given the information

derived from several hystorical studies (see Spiegelhalter et al., 2004). In Section 4 we deal with

the sample size re-estimation problem. Results for the normal model are derived in Section 4.1 and

then applied in Section 4.2 to the B-14 trial on breast cancer (see [21]).

2 Preliminaries

Let Yn be an estimator of θ, the unknown quantity of interest in a clinical trial. Let fn(·; θ) be

the probability density or mass function of Yn. We consider an analysis prior π(·) that formalizes

pre-experimental knowledge on the unknown θ. Given the observed data, yn, let

π(θ|yn) =
π(θ)× fn(yn; θ)

m(yn)
,

be the posterior probability distribution of θ where, assuming with no loss in generality that θ is

continuous, m(yn) =
∫

Θ
f(yn; θ)π(θ)dθ is the marginal distribution of the data. Also, let Pπ(·|yn)

be the posterior probability measure corresponding to π(·|yn). We want to establish whether θ is

greater than δ, a minimally clinical significant effect or effects-difference. We say the experiment

is successful if, for a given γ ∈ (0, 1), we have that:

Pπ (θ > δ|yn) > γ.

Suppose now that K sources of prior knowledge are available for inference on θ, for instance,

opinions of K clinicians or data from K historical studies on the efficacy/superiority of a new

medical intervention. The information from each of these sources is formalized in terms of a prior

distribution on θ: πi(θ) for i = 1, . . . ,K. A standard way to summarize this knowledge is to

consider a mixture of the K prior distributions:

π(θ) =
K∑
i=1

ω0,iπi(θ), ω0,i > 0,
K∑
i=1

ω0,i = 1, (1)

where ω0,i is the prior weight assigned to the i-th component of the mixture, i = 1, . . . ,K.

It is straightforward to check that the posterior probability distribution of θ is:

π(θ|yn) =
K∑
i=1

ω1,i(yn)πi(θ|yn), (2)

where

πi(θ|yn) =
πi(θ)× fn(yn; θ)

mi(yn)
and mi(yn) =

∫
Θ

f(yn; θ)π(θ)dθ
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are the posterior probability distribution of θ and the marginal distribution of the data respectively.

Moreover the weight of the i-th posterior distribution can be updated as

ω1,i(yn) =
ω0,imi(yn)∑K
r=1 ω0,rmr(yn)

, i = 1, . . . ,K.

Finally the mixture form of the analysis prior also reflects in the posterior quantity of interest

Pπ (θ > δ|yn) =
K∑
i=1

ω1,i(yn)Pπi
(θ > δ|yn) ,

where Pπi
(θ > δ|yn) is the posterior probability that θ exceeds δ under prior πi, i = 1, . . . ,K.

3 Predictive approach to SSD

Before starting the experiment, Yn and consequently, π(θ|Yn) and Pπ(θ > δ|Yn) are random. Hence

we need to define predictive SSD criteria, by specifying the probability distribution of the data for

pre-posterior computation. For this purpose we use the design prior πD that models uncertainty

on the unknown parameter when designing the experiment. The corresponding prior predictive or

marginal density is:

mD(yn) =
∫

Θ

fn(yn; θ)πD(θ)dθ.

At this point some remarks are in order.

(i) The prior predictive distribution mD accounts for uncertainty on the design values of θ. This

allows one to avoid local optimality that arises when one uses in pre-posterior computation

fn(yn; θ̃D), for a fixed design value θ̃D (conditional approach).

(ii) If πD is a point-mass probability on a fixed value θ̃D, then mD(yn) ≡ fn(yn; θ̃D) and the

predictive and the conditional approaches coincide.

(iii) If, in the place of fn, we use a point-mass probability on a virtual experimental outcome, ỹn,

we end-up with the approach of [4], [5] and [1].

(iv) The design prior πD and the analysis prior π do not necessarily coincide. The design prior

models uncertainty on the design value before the experiment is performed and it is used to

obtain a sampling distribution that accounts for this uncertainty. The analysis prior models

prior information on θ, to be incorporated in the posterior distribution for final inference on

θ. For motivations and discussion on the two-priors approach, see, among others, [19].

In this framework we choose a suitable predictive summary, for instance the expected value of

Pπ (θ > δ|yn), computed with respect to the marginal distribution,

en = EmD
[Pπ(θ > δ|Yn)] . (3)
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Using the prior in Equation (1), it is straightforward to check that Equation (3) is equal to:

en = EmD

[
K∑
i=1

ω1,i(Yn)Pπi
(θ > δ|Yn)

]
=

K∑
i=1

EmD
[ω1,i(Yn)Pπi

(θ > δ|Yn)] . (4)

Hence, the predictive expectation en is the sum of the predictive expectations of the terms

ω1,i(Yn)Pπi (θ > δ|Yn) , i = 1, . . . ,K,

whose explicit expressions are given in Section 3.1 for normal models with mixtures of conjugate

normal prior distributions.

Then according to the SSD effect-size criterion (introduced in [19]) the optimal sample size is

selected as the minimum n such that the corresponding en exceeds a given threshold η ∈ (0, 1)

n∗ = min (n ∈ N : en > η) . (5)

Note that a more stringent SSD criterion would be based on the predictive probability Pπ(θ >

δ|Yn), as done for instance in [5], [1] and [15]. However, for the sake of simplicity, we will focus on

the expectation criterion just defined.

3.1 Results for Normal model

Assume now that

Yn|θ ∼ N
(
θ,
σ2

n

)
and that each component of the prior is

πi(θ) = N

(
θ|µi,

σ2

n0i

)
, i = 1, . . . ,K,

where N(·|a, b) denotes the density function of a normal random variable of parameters (a, b) and

where, for simplicity, σ2 is assumed to be known. From standard results on conjugate analysis for

the normal model it follows that

πi(θ|yn) = N(θ|Ei(θ|yn), Vi(θ|yn)), mi(yn) = N (yn|µi, vi)

and that

ω1,i(yn) =
ω0,iφ(yn−µi√

vi
)∑K

r=1 ω0,rφ(yn−µr√
vr

)
,

where

Ei(θ|yn) =
n0iµi + nyn
n0i + n

and Vi(θ|yn) =
σ2

n0i + n
(6)
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are the i-th posterior expectation and variance of θ, vi = σ2(n−1
0i + n−1) is the variance of the i-th

predictive distribution mi, i = 1, . . . ,K and where φ(·) is the standard normal density function.

Furthermore,

Pi(θ > δ|yn) = 1− Φ

(
δ − Ei(θ|yn)√

Vi(θ|yn)

)
,

where Φ(·) is the cumulative distribution function of a standard normal random variable. Hence

Equation (4) becomes

en =
K∑
i=1

EmD

 ω0,iφ(Yn−µi√
vi

)∑K
r=1 ω0,rφ(Yn−µr√

vr
)

[
1− Φ

(
δ − Ei(θ|Yn)√

Vi(θ|Yn)

)] . (7)

In the following, normality will be also assumed for the design prior and, consequently, for the

marginal distribution, namely,

πD(θ) = N

(
θ|µD,

σ2

nD

)
, mD(yn) = N

(
yn|µD, σ2

(
1
nD

+
1
n

))
. (8)

Before illustrating an application in Section 3.2, we briefly discuss the choice of the threshold η

involved in the SSD criterion of Equation (5). Existence and actual values of the optimal sample

size n∗ depend crucially on the interplay between the threshold η, the choice of δ and of the design

prior πD.

More specifically, in order to tune η we start by evaluating the suprema of en, that is an

increasing function of n, for given δ and design prior. In Appendix A we show that en converges

to a quantity e∞ that can be computed via a Monte Carlo approximation. Then, we propose to

pick η as a pre-specified percentage of e∞, say β · e∞ with β ∈ (0, 1), so as to ensure the existence

of the optimal sample size n∗. In this way, on the one hand, the optimization problem defined in

Equation (5) is actually well posed and, on the other, we only need to specify the value of easily

interpretable quantities like δ, the clinically significant difference to be detected, and µD, the true

treatment difference under the design prior.

3.2 Example (Magnesium): predictive SSD using a mixture of priors

derived from previous studies

We revisit an example in [16] where the results of a mete-analysis are reinterpreted according to

a Bayesian perspective, in order to show the degree of scepticism necessary to reach an opposite

conclusion. A series of small randomized trials was conducted in order to prove a protective effect

of intravenous magnesium sulphate after acute myocardial infarction. These studies culminated

in a meta-analysis which showed a highly significant 55% reduction in odds of death. This was

confirmed in 1992 by a larger study, the LIMIT-2 trial, which demonstrated a 24% reduction in
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i study log(OR) sd n0i

1 Morton −0.65 1.06 3.6

2 Rasmussen −1.02 0.41 24.3

3 Smith −1.12 0.74 7.4

4 Abraham −0.04 1.17 2.9

5 Feldstedt 0.21 0.48 17.6

6 Shechter −2.05 0.9 4.9

7 Ceremuzynsky 1.03 1.02 3.8

8 LIMIT-2 −0.3 0.15 187

Table 1: Observed results (log odds ratio scale) in 8 studies on the protective effect of magnesium, standard deviation

and effective number of events.

mortality in 2000 patients. All these results suggested an outstanding conclusion: a cheap, safe and

simple treatment reduces mortality in a common condition. For this reason, further investigation

was recommended. but the massive ISIS-4 trial did not actually show evidence of any benefit:

the final result on 58000 patients showed a non significant protective effect of magnesium, also

consistent across major subgroups. Here we simply draw on this framework in order to formalize

the situation in which prior knowledge comes from different historical studies.

We focus on the log odds ratio (log OR) as parameter of interest θ. An estimate of θ is given

by θ̂ = log
(

(a+ 1
2 )(b+ 1

2 )

(c+ 1
2 )(d+ 1

2 )

)
= ym, where a and b denote respectively the number of observed events in

the control arm and in the treatment arm, with a+ b = m, and c and d are the respective numbers

of patients in the two groups who did not experience any event. Then the corresponding statistic

Ym is asymptotically distributed as a normal density of mean θ̂ and variance σ2/m, where σ2 is set

equal to 4. See [16] for further details.

So we use each historical study to elicit a conjugate normal prior distribution. We assume the

estimated log odds ratios and the corresponding standard deviations summarized in Table 1 as the

parameters of the normal prior components. The global analysis prior is then given by a mixture of

these eight priors, with conveniently chosen weights. The prior components and the corresponding

the mixture are represented in the left panel of Figure 1 and Figure 2 choosing respectively equal

weigths or weights propotional to each prior sample size n0i.

Note that, since the parameter of interest is the log OR of magnesium with respect to placebo,

negative values on this scale support the idea of a benefit of magnesium administration. Neverthe-

less in this case we are actually interested in proving that θ is larger than a threshold δ, meaning

that magnesium is not effective. This is not the standard situation of a superiority trial, but the

methodology described in Section 2 and in Section 3 is essentially the same. Alternatevely the
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problem can be reverted, defining the log odds ratio of placebo with respect to magnesium and

focusing on Pπ(θ < δ) as a posterior quantity of interest.

At this point we specify a design prior expressing scepticism towards the treatment. A possible

choice can be based on ISIS-4 trial: this yields a design prior which is a normal density with mean

0.058 and effective number of events 4319, resulting in a variance equals to 0.00092.
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Figure 1: (left panel) Prior components (dashed gray lines), mixed prior with equal weights (continuous gray line) and

design prior (black line). (right panel) Selection of the optimal sample size, using the mixed analysis prior with equal

weights: n∗ = 350 for δ = 0 and n∗ = 2200 for δ = −0.1.
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Figure 2: (left panel) Prior components (dashed gray lines), mixed prior (continuous gray line) with weights proportional

to the number of events in each study and design prior (black line). (right panel) Selection of the optimal sample size,

using the mixed analysis prior with weights proportional to the number of events in each study: n∗ = 510 for δ = 0 and

n∗ = 3000 for δ = −0.1

In the right panel of Figure 1 the predicitive expectation en is plotted with respect to n, for

two different choices of δ, and the optimal sample size is selected (circled) in correspondence of

a prespecified threshold η = 0.8. Since the anaysis prior strongly supports the hypothesis of a

protective effect of magnesium, we would need a sizeable number of events to be able to reach

an opposite conclusion (about 1747 for δ = 0). Moreover if we choose δ = −0.1, the goal is less

challenging and only 498 events are required.

Alternatevely we can choose prior weights proportional to the prior sample sizes n0i. In this

case we obtain the mixture represented in Figure 2; in the right panel the corresponding optimal

sample size is selected. Notice that the prior component of LIMIT-2 trial is highly predominant in

the mixed analysis prior (n08 = 187). This yields larger optimal sample sizes (n∗ = 2498 for δ = 0

and n∗ = 497 for δ = −0.1), since the analysis prior is more informative and closer to the design

prior.

Moreover we considered two less informative design priors with smaller number of events, nD =

432 and nD = 43 respectively. For each different choice of the design parameters we computed the

corresponding e∞. We set consequently η = β · e∞, as discussed in Section 3.1, for instance with

β = 0.80. In this way we obtain the optimal sample sizes reported in Table 2. It is quite evident
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δ nD e∞ η n∗

equal weights proportional weights

−0.1 4319 1 0.80 498 497

432 0.95 0.76 509 510

43 0.70 0.56 198 201

0 4319 0.97 0.78 1747 2489

432 0.73 0.58 243 796

43 0.58 0.46 42 228

Table 2: Optimal sample sizes for equal or proportional weights with respect to different design priors, choosing

η = β · e∞, with β = 0.80

that the more informative the design prior, the higher the maximum achievable value of en. Notice

that, for example, for nD = 43 and δ = 0, e∞ is equal to 0.58, so if we used a fixed η = 0.80,

n∗ would be undetermined. This shows how the criterion suggested in Section 3.1 for choosing η

ensures a greater flexibility.

4 Predictive approach to SSRe

A predictive approach is now used for SSRe. Let us assume that, at a given time point, a fraction

n1 of the planned subjects have completed the trial. The objective is now to select the number n2 of

further sample units needed to complete successfully the experiment, by exploiting the information

contributed by the first n1 observed events; let us denote by yn1 the corresponding observed statistic.

The idea is to use as initial distribution at the interim analysis the posterior density of θ given yn1 ,

π(θ|yn1). Note that from Equation (2) it follows that π(θ|yn1) can be written as a mixture of K

different initial priors, whose weights are ω1,i(yn1), i = 1, ...,K.

In the second part of the trial n2 events are to be observed, with n1+n2 = n. The SSRe problem

is to determine n2. Given the observed value of yn2 after n2 events, the posterior distribution can

be written as

π(θ|yn1 , yn2) =
K∑
i=1

ω2,i(yn2 |yn1)πi(θ|yn1 , yn2)

where

πi(θ|yn1 , yn2) =
πi(θ|yn1)fn2(yn2 ; θ)

mi(yn2 |yn1)
(9)
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and where the weights at the interim analysis are

ω2,i(yn2 |yn1) =
ω1,i(yn1)mi(yn2 |yn1)

K∑
r=1

ω1,r(yn1)mr(yn2 |yn1)
, i = 1, ...,K.

The posterior predictive distribution of Yn2 is

mi(yn2 |yn1) =
∫

Θ

fn2(yn2 ; θ)πi(θ|yn1)dθ (10)

and the posterior quantity of interest is

Pπ(θ > δ|yn1 , yn2) =
K∑
i=1

ω2,i(Yn2 |yn1)Pπi
(θ > δ|yn1 , yn2).

Again, note that this quantity is random before yn2 is observed. Hence, we introduce a predictive

criterion to select the optimal additional sample size n∗2:

n∗2 = min (n ∈ N : en1,n2 > η) η ∈ (0, 1)

where

en1,n2 = EmD
[Pπ(θ > δ|yn1 , Yn2)] =

K∑
i=1

EmD
[ω2,i(Yn2 |yn1)Pπi

(θ > δ|yn1 , Yn2)] . (11)

The expected value in Equation (11) is now computed with respect to the predictive distribution,

mD, induced by the design prior, πD. Note that, at the interim stage, to obtain the predictive

density mD for SSRe we can use either πD(θ) or πD(θ|yn1). In the former case we preserve the

initial design goals, expressed by πD(θ). In the latter we “adjust” design objectives according to

the findings of the first part of the experiment. These two alternatives are discussed in the example

of Section 4.2.

4.1 Results for Normal model

It is now straightforward to derive en1,n2 for the normal model. From Equation (11) we have

en1,n2 =
K∑
i=1

EmD

 ω1,i(yn1)φ
(
Yn2−µi,2√

vi,2

)
∑K
r=1 ω1,r(yn1)φ

(
Yn2−µr,2√

vr,2

) · [1− Φ

(
δ − Ei,2(θ|yn1 , Yn2)√

Vi,2(θ|yn1 , Yn2)

)] . (12)

This expression is essentially similar to the one in Equation (7), with updated posterior and pre-

dictive means and variances, given yn1 . See Appendix B for further details. As for the choice of

the threshold η, the criterion suggested at the end of Section 3.1 still holds.

In order to illustrate the proposed methodology for SSRe in Section 4.2 we consider an appli-

cation in which the normal approximation for the log hazard ratio (log HR) is used and interim

analysis data are available.
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np nt n1 log(HR) sd

I after first interim 18 28 46 0.435 0.295

II after second interim 24 43 67 0.567 0.244

III after third interim 32 56 88 0.545 0.213

IV after fourth interim 36 66 102 0.588 0.198

V final results 50 85 135 0.519 0.172

Table 3: B14: Interim and final results arm on the log hazard ratio scale: np and nt denote the number of events

occurred in the placebo and in the treatment arm respectively and the total number of events is n1 = np + nt

4.2 Example (B-14): Predictive SSRe using a mixture of priors express-

ing opposite beliefs

Here we consider the B-14 study (see [21], [16]) in which data from four interim analysis and

final results are available. The objective of the trial was to assess a long-term protective effect of

tamoxifen in preventing the recurrence of breast cancer. A sequential randomized controlled study

was performed, enrolling disease-free patients after 5 years of therapy. According to the sequential

design, an interim analysis was scheduled approximatively every 1-1.5 years (using O’Brien-Fleming

stopping boudaries). At the beginning of the trial the planned sample size was 115 events, to detect

a 40% failure reduction (corresponding to a hazard ratio of 0.6) with 85% power. Assuming a 18%

event rate, this yielded a total planned sample size approximately equal to 624 patients; finally the

effective number of recruited patients was 1172, because of an accrual rate lower than expected.

Dignam et al. (1998) discussed a Bayesian interpretation of these results, under a range of

prior assumptions. Using the normal approximation for the log hazard ratio estimator (see [16])

we choose here two normal priors expressing opposite beliefs, a sceptical prior π1(θ) = N(θ|0, 0.31)

and an enthusiastic prior π2(θ) = N(θ| − 0.51, 0.31), where standard deviation is chosen to have

5% chance that the true difference exceeds a 40% reduction or, respectively, that a negative effect

is observed (σ2 = 4, n01 = n02 = 41.4). Furthermore, we center the design prior on the actual

design value 0.51 (0.60 on the hazard ratio scale), with standard deviation equals to 0.19 (σ2 = 4,

nD = 115).

The data at the four interim analyses and the final results of the trial are summarized in Table

3. After each interim analysis we re-estimate the optimal additional sample size n∗2, needed to

obtain that the predictive expectation of the probability P (θ < δ|yn1) is sufficiently large. For

instance, we set δ = −0.22, corresponding to a 20% reduction on the HR scale. For each interim

analysis n1 = np+nt denotes the total number of events observed so far, with np and nt indicating

the number of events in the placebo and in the treatment arm respectively.

First of all we assign equal weights to the two prior components of the mixture π(θ) defined
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in Equation (1). The analysis prior and the design prior are represented in Figure 3. After the

first interim analysis, in order to reach a conclusion favouring tamoxifen, it would be necessary to

observe a large number of events (for example, n∗2 = 59, for a threshold η = 0.75 corresponding to

the 80% of the supremum of en1,n2). Moreover after each interim analysis the additional number

of units required to conclude in favour of a protective effect of tamoxifen becomes larger and larger

(see Figure 4). This is coherent with the fact that the negative results actually observed at each

step, make it more and more difficult to revert the evidence against tamoxifen.

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

before the experiment  

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

after 1st interim  

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

after 2nd interim  

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

after 3rd interim  

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

after 4th interim  

Figure 3: Information update at each interim point: the dotted lines represent the prior components of the mixed

analysis prior, the dashed density is the fixed design prior, while the dashed-dotted curves indicate the progressive update

of the design prior. The continuous line represents the likelihood at each step.
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Figure 4: Sample size re-estimation at each interim time (denoted by the numbers from 0 to 4). Continuous lines are

referred to the case of fixed design prior; dashed lines are referred to the case of updated design prior

In the right panel of Figure 4 the dashed lines represent the SSRe criteria when the design

prior is also updated after each interim: the evidence of the data supports a conclusion opposite to

the one we expected in designing the experiment and this affects en1,n2 . In this case the previous

threshold η is impractical already after the first interim, the optimal additional sample size is

undetermined. If η is reduced to 0.44 (corresponding to β = 0.8), after the first interim, we have

n∗2 = 590. In Table 4 we report the optimal re-estimated sample sizes for several choices of the

initial weights, with fixed design prior. The weights of the sceptical component tend to be higher,

due to the evidence of the data against a protective effect of tamoxifen. This corresponds to an

increasing re-estimated number of required events after each interim analysis.

5 Discussion

In this paper we present a predictive methodology for sample size selection and adjustment in

clinical trials. The two main features of the method are: (i) distinction between analysis and

design prior; (ii) use of a mixture analysis prior.

The role of the design prior and its relationships with the analysis prior is discussed in several

previous papers. Here we just want to remark the importance of a possible distinction between
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interim analysis

before I II III IV

weight1 1/2 0.87 0.94 0.95 0.96

weight2 1/2 0.13 0.06 0.05 0.04

n∗2 59 638 742 732 864

weight1 1/3 0.77 0.88 0.90 0.92

weight2 2/3 0.23 0.12 0.10 0.08

n∗2 36 543 671 714 796

weight1 2/3 0.93 0.97 0.97 0.98

weight2 1/3 0.07 0.03 0.03 0.02

n∗2 79 800 739 787 855

weight1 1/10 0.43 0.62 0.66 0.72

weight2 9/10 0.57 0.38 0.34 0.27

n∗2 10 503 592 669 759

weight1 9/10 0.98 0.99 0.99 0.996

weight2 1/10 0.02 0.01 0.01 0.004

n∗2 116 799 823 826 931

Table 4: Optimal re-estimated sample sizes for several choices of the initial weigths (weight1 refers to the sceptical

prior component, weight2 to the enthusiastic one). Given that en1,∞ = 0.94 and choosing β = 0.80, the threshold η is

0.75.
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modelling pre-experimental knowledge on the unknown parameter (analysis prior) and modelling

uncertainty on design goals of the trial (design prior). See [17], [18], [19], [20] and [7] for more

details.

The use of priors mixtures allows one to take into account different sources of pre-experimental

information and to combine them in a simple way. Sometimes these sources actually correspond

to results of previous studies or to opinions of several experts. It is also possible to consider

“conventional” priors that reflect opposite attitudes towards the trial such as enthusiasm and

scepticism. In this way we are able to incorporate a large amount of information and uncertainty

on the unknown treatment effect. One of the main advantages of this approach is that it typically

avoids sample size underestimation and low predictive probability of trial success.

One critical aspect of the method is the choice of prior weights in the mixture. Of course,

this is problem specific. However, we discuss in the examples some strategies. In Example of

Section 3.2 we compare some alternative weights assignments, such as uniform weights and weights

proportional to “prior sample sizes” of each historical study used to elicit the prior components.

In Example of Section 4.2 we consider different combinations of weights for an enthusiastic and a

sceptical prior and we examine their impact on resulting sample sizes.

The presence of several sources of prior knowledge makes it natural to plan an interim analysis

and a sample size re-estimation step. This approach appears to us quite useful when available

sources of prior knowledge (or experts opinions) are conflicting and when, initially, the weight of

each prior in the mixture is not predominant over the others. In this case, the first portion of

data (yn1) allows one to adjust both the starting prior distributions, πi and their weights in the

mixtures. Note also that, in principle, multiple sample size adjustments do not have drawbacks in

a Bayesian perspective. In fact, from this point of view, repetition of the SSRe procedure implies

just a sequential use of Bayes theorem. This is shown, for instance, in the Example of Section 4.2.

The predictive approach to SSD and SSRe based on mixtures of analysis priors presented in

the paper can be potentially extended in several directions. First of all, this methodology can be

applied to other models, such as Bernoulli and survival trials. (See also [1], where Beta mixtures are

used for non-predictive SSD). A further possible extension is to consider mixtures of nonconjugate

analysis priors. In these cases one typically needs to resort to numerical computational methods.

See [19] for discussion. Comparison between sample size determined with exact results and normal

approximations are also of interest.
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A Asymptotic behaviour of en

As pointed out at the end of Section (3.1), in order to have a practical way to choose the threshold

η, we need to study the asymptotic behaviour of (3). First of all notice that as n → ∞ we have

that:

• the posterior mean of the i−th component Ei(θ|Yn) is asymptotically equivalent to Yn;

• the posterior variance of the i−th component, Vi(θ|Yn), tends to 0 (a.s.);

• the variance of the marginal distribution induced by the i−th prior component, vi, converges

to σ2/n0i (prior variance);

• the sequence of random variables Yn, with marginal densitiesmD(·), converges toN
(
µD,

σ2

nD

)
,

whose density is here denoted as m∞.

Hence, by the dominated convergence theorem, the limit of (3) is

lim
n→∞

en =
K∑
i=1

lim
n→∞

EmD

 ω0,iφ
(
Yn−µi√

vi

)
∑K
r=1 ω0,rφ

(
Yn−µr√

vr

) [1− Φ

(
δ − Ei(θ|Yn)√

Vi(θ|Yn)

)]
=

K∑
i=1

∫
R

lim
n→∞

 ω0,iφ
(
yn−µi√

vi

)
∑K
r=1 ω0,rφ

(
yn−µr√

vr

) [1− Φ

(
δ − Ei(θ|yn)√

Vi(θ|yn)

)]mD(yn)dyn. (13)

Note now that, as n → ∞, the expression in square brackets in Equation (13) converges to 1 or 0

according to the sign of the argument of Φ(·). Hence, taking into account the limiting distribution

of Yn, each term of the sum can be written as:

∫
R

 ω0,iφ( z−µi√
vi

)∑K
r=1 ω0,rφ( z−µr√

vr
)

I[δ,∞)(z)

 ·m∞(z)dz.

Therefore Equation (13) can be written more synthetically as

K∑
i=1

Em∞
[
ω1,i(Z) · I[δ,∞)(Z)

]
.

This quantity can be computed through a Monte Carlo approximation.

B SSRe: Results for the Normal model

We provide here the details for deriving en1,n2 for the normal model (see Equation (12)). First of

all, each posterior component of Equation (9) is

πi(θ|yn1 , yn2) = N(θ|Ei,2(θ|yn1 , yn2), Vi,2(θ|yn1 , yn2))
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where the posterior mean and variance are respectively

Ei,2(θ|yn1 , yn2) =
(n0i + n1)Ei(θ|yn1) + n2yn2

n0i + n1 + n2

and

Vi,2(θ|yn1 , yn2) =
σ2

n0i + n1 + n2
.

Moreover the marginal distribution in Equation (10) is a normal density of parameters (µi,2, vi,2),

where the mean µi,2 is equal to the posterior mean Ei(θ|yn1) defined in Equation (6) and the

variance is given by

vi,2 = σ2

(
1

n0i + n1
+

1
n2

)
for i = 1, ...,K. Note that the expected value in Equation (12) is computed with respect to the

predictive distribution mD, which is a normal distribution. As discussed in Section 4, mD can be

alternatevely derived using the design prior πD(θ) or the posterior distribution πD(θ|yn1). In the

first case we have again the predictive distribution of Equation (8), while in the second case we

have

mD(yn2 |yn1) = N

(
yn2 |

µDnD + n1yn1

nD + n1
, σ2

(
1

nD + n1
+

1
n2

))
.
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