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Abstract

In standard regression analysis the relationship between one (response) vari-
able and a set of (explanatory) variables is investigated. In a classical frame-
work the response is affected by probabilistic uncertainty (randomness) and,
thus, treated as a random variable. However, the data can also be subjected
to other kinds of uncertainty, such as imprecision. A possible way to manage
all of these uncertainties is represented by the concept of fuzzy random vari-
able (FRV). The most common class of FRVs is the LR family (LR FRV),
which allows us to express every FRV in terms of three random variables,
namely, the center, the left spread and the right spread. In this work, lim-
iting our attention to the LR FRV class, we address the linear regression
problem in presence of one or more imprecise random elements. The proce-
dure for estimating the model parameters and the determination coefficient
are discussed, and the hypothesis testing problem is addressed following a
bootstrap approach. Furthermore, in order to illustrate how the proposed
model works in practice, the results of a real-life example are given.
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1. Introduction

In the literature a great deal of attention has been paid to the manage-
ment of uncertain information. We can roughly distinguish two sources of
uncertainty, namely, randomness and imprecision. In the case of randomness
the available information is uncertain because we do not known the (precise)
outcome of a (random) mechanism. In general, randomness is limited to the
data generation process and it can be dealt with probability theory (proba-
bilistic uncertainty). In contrast with randomness, imprecision is connected
to the uncertainty concerning the placement of an outcome in a given class
and, thus, it can be seen as non-probabilistic uncertainty.
The different sources of uncertainty are not exclusive but can occur together.
A possible way to cope with imprecision is represented by fuzzy set theory
(Zadeh, 1965). This allows us to express the imprecise information in terms
of fuzzy sets. When such information is also affected by randomness, the con-
cept of fuzzy random variable (FRV) can be adopted (Puri & Ralescu, 1986).
In this work we aim at investigating the linear regression problem when the
data are random and imprecise. This problem has been deeply analyzed by
coping with the different sources of uncertainty in a separate way. With
particular reference to imprecise data, at least three approaches can be dis-
tinguished. The first one is the possibilistic approach. Originally introduced
by Tanaka et al. (1982), its basic idea is that the regression model is intrin-
sically fuzzy because there does not exist a “true” relationship between the
response variable and the explanatory ones. This is done by detecting fuzzy
regression coefficients such that the fuzziness of the estimated response vari-
able is minimized. Other works about possibilistic regression can be found
in, e.g., Tanaka & Watada (1988), Tanaka et al. (1995) and Guo & Tanaka
(2006). Another approach is the least squares one, in which a suitable dis-
similarity measure between the observed and the estimated response variable
must be introduced and the model parameters are estimated by minimizing
such a dissimilarity measure. See, for instance, Celminš (1987), Diamond
(1988), Chang & Lee (1996), D’Urso (2003), Coppi et al. (2006), Bargiela et
al. (2007), Lu & Wang (2009). Generally speaking, the possibilistic and least
squares approaches could also be used when the fuzzy data are affected by
randomness. Unfortunately, this is simply done by overlooking it. The third
line of research, which we may call fuzzy-probabilistic approach, consists of
explicitly taking into account randomness for estimating the regression pa-
rameters and assessing their properties. Works belonging to this approach
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can be found in, e.g., Körner & Näther (1998), Krätschmer (2006a, 2006b),
Näther (2006), Ferraro et al. (2009a), González-Rodŕıguez et al. (2009).
Note, however, that a few assignments of the previously mentioned papers
to a given approach could be debatable.
The available proposals for linear regression in the presence of imprecise data
can also be distinguished with respect to the nature (precise or imprecise)
of the response and explanatory variables. In this paper, we assume to deal
with imprecise response and explanatory variables, affected by randomness,
and we approach the linear regression problem from the fuzzy-probabilistic
viewpoint. Limiting our attention to the so-called LR fuzzy family, this is
achieved by proposing a new linear regression model exploiting the potential-
ities of FRVs. As we will see, the parameters can be expressed in terms of the
moments of real random variables. To estimate the parameters a closed form
solution will be provided and their statistical properties will be investigated.
The paper is organized as follows. In the next section, the concepts of (LR)
fuzzy sets and FRVs are recalled. Then, Section 3 focuses on the proposed
linear regression model. The estimation of the model parameters is discussed
in Section 4. Section 5 addresses the hypothesis testing problem. To do it,
the bootstrap approach is adopted and a simulation experiment is carried out
in order to evaluate the quality of the bootstrap tests. Finally, the results of
a real-life application are reported in Section 6 and some concluding remarks
are given in Section 7.

2. Preliminaries

Given a universe U of elements, a fuzzy set Ã is a subset of U defined
through the so-called membership function µ eA (x), ∀x ∈ U . For a generic
x ∈ U , the membership function expresses the extent to which x belongs to
Ã. Such a degree ranges from 0 (complete non-membership) to 1 (complete

membership). The fuzzy set Ã is interpreted as a property (for instance the
concept of “good”) and the membership function gives how well a generic x
in the universe U (i.e., the scale [0, 10]) is able to characterize the property
(i.e., what “good” is). In other words, µ eA (8) = 0.9 is the degree of truth
(0.9) of “good” concerning number 8 (8 characterizes “good” with a degree
equal to 0.9).
A particular class of fuzzy sets is the LR family, whose members are the
so-called LR fuzzy numbers. The space of the LR fuzzy numbers is denoted
by FLR. A nice property of the LR family is that its elements can be deter-
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mined uniquely in terms of the mapping s : FLR → R3, i.e., s(Ã) = s eA =

(Am, Al, Ar). This implies that Ã can be expressed by means of three real-
valued parameters, namely, the center (Am) and the (non-negative) left and
right spreads (Al and Ar, respectively). In what follows it is indistinctly used

Ã ∈ FLR or (Am, Al, Ar).
The arithmetics considered in FLR are the natural extensions of the Minkowski
sum and the product by a positive scalar for interval. Going into detail, the
sum of Ã and B̃ in FLR is the LR fuzzy number Ã + B̃ so that

(Am, Al, Ar) + (Bm, Bl, Br) = (Am + Bm, Al + Bl, Ar + Br),

and the product of Ã ∈ FLR by a scalar γ is the LR fuzzy number γÃ so
that

γ(Am, Al, Ar) =


(γAm, γAl, γAr) γ > 0,

(γAm,−γAr,−γAl) γ < 0,
1{0} γ = 0.

The membership function of Ã ∈ FLR can be written as

µ eA(x) =

{
L

(
Am−x

Al

)
x ≤ Am,

R
(

x−Am

Ar

)
x ≥ Am,

(1)

where the functions L and R are particular decreasing shape functions from
R+ to [0, 1] such that L(0) = R(0) = 1 and L(x) = R(x) = 0,∀x ∈ R \ [0, 1]
(see Fig. 1).

Figure 1: Examples of LR fuzzy numbers
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Ã is a triangular fuzzy number if (1) takes the form

µ eA (x) =


0 x ≤ Am − Al,

1− Am−x
Al Am − Al ≤ x ≤ Am,

1− x−Am

Ar Am ≤ x ≤ Am + Ar,
0 x ≥ Am + Ar.

(2)

The α-level set (0 < α ≤ 1) of Ã can be defined as the non-empty compact
convex subset of R, Aα, such that Aα =

{
x ∈ U : µ eA(x) ≥ α

}
. If α = 0,

A0 = cl(x ∈ R : µ eA(x) > 0)
The definition of α-level set is connected with that of fuzzy random variable
(FRV) in the Puri and Ralescu sense (Puri & Ralescu, 1986). Note that in
the sequel we limit our attention to FRVs of LR type (in brief LR FRV). Let

(Ω, A, P ) be a probability space, an LR FRV is a mapping X̃ : Ω → FLR such
that the α-level set Xα is a random compact convex set for any α ∈ [0, 1].
As for non-fuzzy random variables, it is possible to determine the moments
for a FRV. To this purpose, it is necessary to introduce a suitable metric
D2

LR(X̃, Ỹ ) =< s eX − seY , s eX − seY >LR for LR fuzzy numbers, where <>LR

denotes the inner product, so that (FLR, DLR) is a metric space. Note that we
can also express the moments according to the mapping s. The expectation
of a FRV X̃ is the unique fuzzy set E(X̃) (∈ FLR) such that (E(X̃))α =

E(Xα) provided that E‖X̃‖2
DLR

< ∞. Also, on the basis of the mapping
s, we can observe that sE( eX) = (E(Xm), E(X l), E(Xr)). The variance of

X̃ can be defined as σ2eX = var(X̃) = E[(D2
LR(X̃, E(X̃))]. In terms of s,

it is σ2eX = var(X̃) = E < s eX − sE( eX), s eX − sE( eX) >LR. In a similar way,

the covariance between two FRVs X̃ and Ỹ is σ eX,eY = cov(X̃, Ỹ ) = E <
s eX − sE( eX), seY − sE(eY ) >LR. In order to better characterize the moments of
FRVs, we now introduce a particular distance measure. Following Yang &
Ko (1996), we have

D2
LR(X̃, Ỹ ) = (Xm − Y m)2 + [(Xm − λX l)− (Y m − λY l)]2

+ [(Xm + ρXr)− (Y m + ρY r)]2. (3)

In (3), the parameters λ =
∫ 1

0
L−1(ω)dω and ρ =

∫ 1

0
R−1(ω)dω play the role

of taking into account the shape of the membership function. For instance, if
the membership function takes the form reported in (2), it is λ = ρ = 1

2
. For

what follows it is necessary to embed the space FLR into R3 by preserving
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the metric. For this reason a generalization of the Yang and Ko metric
has been derived (see Ferraro et al. 2009a). Given a = (a1, a2, a3) and
b = (b1, b2, b3) ∈ R3, it is

D2
λρ(a, b) = (a1 − b1)

2 + ((a1 − λa2)− (b1 − λb2))
2

+ ((a1 + ρa3)− (b1 + ρb3))
2, (4)

where λ, ρ ∈ R+. The distance in (4) will be used in the sequel as a tool for
quantifying errors in the regression model we are going to introduce.

3. The linear regression model for LR FRVs

The available information refers to an LR fuzzy response variable Ỹ and p
LR fuzzy explanatory variables X̃1, X̃2, ..., X̃p observed on a sample of n sta-

tistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. We are interested in analyzing the

relationship between Ỹ and X̃1, X̃2, ..., X̃p. The idea is to model the center

and the spreads of Ỹ by means of the centers and the spreads of X̃1, X̃2, ..., X̃p.
However, in doing so, attention should be paid to the non-negativity of the
spreads of Ỹ . To overcome this problem one can either solving a non-negative
regression problem (see, e.g., Lawson & Hanson, 1995) or modelling a trans-

formation of the spreads of Ỹ (the new “response variable”) by means of

the centers and the spreads of X̃1, X̃2, ..., X̃p. The former choice is a numeri-
cal procedure yielding a dependence between the errors and the explanatory
variables (Liew, 1976) and not allowing to formalize a realistic theoretical
model and to obtain a complete analytical solution. We thus propose to con-
sider the latter choice introducing two invertible functions g : (0, +∞) −→ R
and h : (0, +∞) −→ R. The linear regression model can be formalized as

Y m = X a
′
m + bm + εm,

g(Y l) = X a
′

l + bl + εl,
h(Y r) = X a

′
r + br + εr,

(5)

where X = (Xm
1 , X l

1, X
r
1 , ..., X

m
p , X l

p, X
r
p) is the row-vector of lenght 3p of

all the components of the explanatory variables, εm, εl and εr are real-
valued random variables with E(εm|X) = E(εl|X) = E(εr|X) = 0, am =
(a1

mm, a1
ml, a

1
mr, ..., a

p
mm, ap

ml, a
p
mr), al = (a1

lm, a1
ll, a

1
lr, ..., a

p
lm, ap

ll, a
p
lr) and ar =

(a1
rm, a1

rl, a
1
rr, ..., a

p
rm, ap

rl, a
p
rr) are row-vectors of length 3p of the parameters

related to X. The generic at
ij is the regression coefficient between the com-

ponent i ∈ {m, l, r} of Ỹ (where m, l and r refer to the center Y m and
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the transformations of the spreads g(Y l) and h(Y r), respectively) and the

component j ∈ {m, l, r} of the explanatory variables X̃ t, t = 1, ..., p, (where
m, l and r refer to the corresponding center, left spread and right spread).
For example, a3

mr represents the relationship between the right spread of the

explanatory variable X̃3 (Xr
3) and the center of the response, Y m.

The covariance matrix of X is denoted by ΣX = E
[
(X − EX)

′
(X − EX)

]
and Σ stands for the covariance matrix of (εm, εl, εr), with variances, σ2

εm
,

σ2
εl

and σ2
εr

, strictly positive and finite. The population parameters can then
be expressed, as usual, in terms of some moments related to real random
variables. We get

a
′

m = {ΣX}−1 E
[
(X − EX)

′
(Y m − EY m)

]
,

a
′

l = {ΣX}−1 E
[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

a
′

r = {ΣX}−1 E
[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
,

bm = E(Y m|X)− EX {ΣX}−1 E
[
(X − EX)

′
(Y m − EY m)

]
,

bl = E(g(Y l)|X)− EX {ΣX}−1 E
[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

br = E(h(Y r)|X)− EX {ΣX}−1 E
[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
.

The above expressions are useful to prove some statistical properties of the
estimators introduced in the next section.

Remark 1. In the simple case, that is, p = 1, the model (5) takes the form
Y m = ammXm + amlX

l + amrX
r + bm + εm,

g(Y l) = almXm + allX
l + alrX

r + bl + εl,
h(Y r) = armXm + arlX

l + arrX
r + br + εr.

Remark 2. When the explanatory variables are real-valued, the model (5)
reduces to the regression model proposed by Ferraro et al. (2009a).

3.1. The determination coefficient

Since the total variation of the response can be written in terms of vari-
ances and covariances of real random variables, by taking advantage of their
properties it can be decomposed in the variation not depending on the model
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and that explained by the model. In particular, let Ỹ and X̃1, X̃2, ..., X̃p be
LR FRVs satisfying the linear model (5) so that the errors are uncorrelated
with X, by indicating Y T = (Y m, g(Y l), h(Y l)), we obtain

E
[
D2

λρ(Y
T , E(Y T ))

]
= E

[
D2

λρ(Y
T , E(Y T |X))

]
+ E

[
D2

λρ(E(Y T |X), E(Y T ))
]
. (6)

Based on the decomposition of the total variation (6), it is possible to define
the following determination coefficient,

Definition 1. Let Ỹ be the LR FRV of the linear model (5), the determina-
tion coefficient can be defined as

R2 =
E

[
D2

λρ(E(Y T |X), E(Y T ))
]

E
[
D2

λρ(Y
T , E(Y T ))

] = 1−
E

[
D2

λρ(Y
T , E(Y T |X))

]
E

[
D2

λρ(Y
T , E(Y T ))

] . (7)

This coefficient measures the degree of linear relationship. As in the classical
case, it takes values in [0, 1]. In particular, R2 = 0 indicates linear indepen-
dence and when R2 reaches the value 1, it shows that the variability of the
response is completely explained by the model.

4. The estimation problem

4.1. Estimation of the regression parameters

The estimation problem of the regression parameters is faced by means of
the Least Squares (LS) criterion. By using the generalized Yang-Ko metric
D2

λρ written in matrix notation, the LS problem consists in looking for âm,

âl, âr, b̂m, b̂l and b̂r such that

∆2
λρ =D2

λρ((Y
m, g(Y l), h(Y r)), ((Y m)∗, g∗(Y l), h∗(Y r))) (8)

is minimized, where Y m, g(Y l) and h(Y r) are the n×1 vectors of the observed
values and (Y m)∗ = Xa

′
m + 1bm, g∗(Y l) = Xa

′

l + 1bl and h∗(Y r) = Xa
′
r + 1br

are the theoretical ones being X = (X1, X2, ..., Xn)
′
the n×3p matrix of the

explanatory variables.
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Proposition 1. The solution of the LS problem is

â
′

m = (Xc′
Xc)−1Xc′

Y mc,

â
′

l = (Xc′
Xc)−1Xc′

g(Y l)c,

â
′

r = (Xc′
Xc)−1Xc′

h(Y r)c,

b̂m = Y m −X â
′

m,

b̂l = g(Y l)−X â
′

l,

b̂r = h(Y r)−X â
′

r,

where

Y mc = Y m − 1Y m,

g(Y l)c = g(Y l)− 1g(Y l),

h(Y r)c = h(Y r)− 1h(Y r)

are the centered values of the response variables,

Xc = X− 1 X

is the centered matrix of the explanatory variables and, Y m, g(Y l), h(Y r)
and X denote, respectively, the sample means of Y m, g(Y l), h(Y r) and X.

Proof. In order to solve the minimization problem and to find the parame-
ters estimators, we follow the usual procedure of equating to zero the partial
derivatives of the objective function with respect to (w.r.t.) the parameters
to be estimated, although we have to take into account that the regression
parameters are related to some others. The objective function (8) can be
exploited as

∆2
λρ = ‖Y m − (Y m)∗‖2 +

∥∥(
Y m − λg(Y l)

)
−

(
(Y m)∗ − λg∗(Y l)

)∥∥2

+ ‖(Y m + ρh(Y r))− ((Y m)∗ + ρh∗(Y r))‖2
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and, after a little algebra, it can be written as

∆2
λρ = 3

(
Y m −Xa

′

m − 1bm

)′ (
Y m −Xa

′

m − 1bm

)
+ λ2

(
g(Y l)−Xa

′

l − 1bl

)′ (
g(Y l)−Xa

′

l − 1bl

)
+ ρ2

(
h(Y r)−Xa

′

r − 1br

)′ (
h(Y r)−Xa

′

r − 1br

)
− 2λ

(
Y m −Xa

′

m − 1bm

)′ (
g(Y l)−Xa

′

l − 1bl

)
+ 2ρ

(
Y m −Xa

′

m − 1bm

)′ (
h(Y r)−Xa

′

r − 1br

)
. (9)

Starting from the estimation of bl and br, we equate to zero the partial
derivatives w.r.t bl and br, respectively. It is easy to find that the minimum
is attained at

bl = g(Y l)−X a
′

l −
1

λ
Y m +

1

λ
X a

′

m +
1

λ
bm, (10)

br = h(Y r)−X a
′

r +
1

ρ
Y m − 1

ρ
X a

′

m −
1

ρ
bm. (11)

Since bl and br depend on bm, we have to substitute (10) and (11) in (9)
before equating to zero the partial derivative of the objective function w.r.t.
bm. As a result, we obtain

bm = Y m −X a
′

m.

Since the parameters bm, bl and br are expressed in terms of am, al and ar, to
go on with the estimation procedure it is important to take this into account
by substituting bm, bl and br in the objective function.
We consider the centered vectors Y mc, g(Y l)c, h(Y r)c and the centered matrix
Xc to make it simpler to analyze the objective function that can be expressed
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as follows

∆2
λρ = 3(Y mc −Xca

′

m)
′
(Y mc −Xca

′

m)

+ λ2
(
g(Y l)c −Xca

′

l

)′ (
g(Y l)c −Xca

′

l

)
+ ρ2

(
h(Y r)c −Xca

′

r

)′ (
h(Y r)c −Xca

′

r

)
− 2λ(Y mc −Xca

′

m)
′
(
g(Y l)c −Xca

′

l

)
+ 2ρ(Y mc −Xca

′

m)
′
(
h(Y r)c −Xca

′

r

)
. (12)

Following the usual reasoning it is easy to check that

a
′

l = (Xc′
Xc)−1Xc′

g(Y l)c − 1

λ
(Xc′

Xc)−1Xc′
Y mc +

a
′
m

λ
, (13)

a
′

r = (Xc′
Xc)−1Xc′

h(Y r)c +
1

ρ
(Xc′

Xc)−1Xc′
Y mc − 1

ρ
a

′

m. (14)

The last step is the estimation of am. Since this vector appears in (13) and
(14) we need to substitute (13) and (14) in (12). By equating to 0 the partial
derivative of (12) w.r.t. am we get

â
′

m = (Xc′
Xc)−1Xc′

Y mc.

By making all the appropriate substitutions we also find

â
′

l = (Xc′
Xc)−1Xc′

g(Y l)c,

â
′

r = (Xc′
Xc)−1Xc′

h(Y r)c,

b̂m = Y m −X â
′

m,

b̂l = g(Y l)−X â
′

l,

b̂r = h(Y r)−X â
′

r.

2

Remark 3. Since the LS estimators are written in terms of sample moments
and taking into account the expression of the theoretical values, it can be
shown that they are unbiased and strongly consistent.
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4.2. Estimation of the determination coefficient

In order to estimate the determination coefficient, it is worth introducing
the next proposition about the decomposition of the total sum of squares.

Proposition 2. Let Ỹ and X̃1, X̃2, ..., X̃p be LR FRVs satisfying the linear

model (5) observed on n statistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. The
total sum of squares, SST, is equal to the sum of the residual sum of squares,
SSE, and the regression sum of squares, SSR, that is,

SST = SSE + SSR. (15)

In details,

(i) the total sum of squares (SST) is

SST =
∥∥Y m − 1 Y m

∥∥2
+

∥∥∥(
Y m − λg(Y l)

)
−

(
1 Y m − λ1 g(Y l)

)∥∥∥2

+
∥∥∥(Y m + ρh(Y r))−

(
1 Y m + ρ1 h(Y r)

)∥∥∥2

,

(ii) the residual sum of squares (SSE) is

SSE =
∥∥∥Y m − Ŷ m

∥∥∥2

+
∥∥∥(

Y m − λg(Y l)
)
−

(
Ŷ m − λĝ(Y l)

)∥∥∥2

+
∥∥∥(Y m + ρh(Y r))−

(
Ŷ m + ρĥ(Y r)

)∥∥∥2

,

(iii) the regression sum of squares (SSR) is

SSR =
∥∥∥Ŷ m − 1 Y m

∥∥∥2

+
∥∥∥(

Ŷ m − λĝ(Y l)
)
−

(
1 Y m − λ1 g(Y l)

)∥∥∥2

+
∥∥∥(

Ŷ m + ρĥ(Y r)
)
−

(
1 Y m + ρ1 h(Y r)

)∥∥∥2

,

where Ŷ m, ĝ(Y l), ĥ(Y r) are the vectors of the estimated values, that is,

Ŷ m = Xâ
′

m + 1 b̂m, ĝ(Y l) = Xâ
′

l + 1 b̂l, ĥ(Y r) = Xâ
′

r + 1 b̂r.
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Proof. The total sum of squares can be written as

SST = 3
(
Y m − 1 Y m

)′ (
Y m − 1 Y m

)
+ λ2

(
g(Y l)− 1 g(Y l)

)′ (
g(Y l)− 1 g(Y l)

)
+ ρ2

(
h(Y r)− 1 h(Y r)

)′ (
h(Y r)− 1 h(Y r)

)
− 2λ

(
Y m − 1 Y m

)′ (
g(Y l)− 1 g(Y l)

)
+ 2ρ

(
Y m − 1 Y m

)′ (
h(Y r)− 1 h(Y r)

)
. (16)

By subtracting and adding Ŷ m in
(
Y m − 1 Y m

)
, we get that

(
Y m − 1 Y m

)′ (
Y m − 1 Y m

)
is equal to (

Y m − Ŷ m + Ŷ m − 1 Y m
)′ (

Y m − Ŷ m + Ŷ m − 1 Y m
)

=
(
Y m − Ŷ m

)′ (
Y m − Ŷ m

)
+

(
Ŷ m − 1 Y m

)′ (
Ŷ m − 1 Y m) (17)

+ 2
(
Y m − Ŷ m

)′ (
Ŷ m − 1 Y m

)
(18)

The first two terms of (17) are the first terms of SSE and SSR, respectively.

Now we prove that the term in (18) is equal to 0. Since Ŷ m = Xâ
′

m + 1 b̂m

where â
′

m = (Xc′
Xc)−1Xc′

Y mc and b̂m = Y m −X â
′

m, it results(
Y m − Ŷ m

)′ (
Ŷ m − 1 Y m

)
=

(
Y m −Xâ

′

m − 1 Y m + 1 X â
′

m

)′ (
Xâ

′

m + 1 Y m − 1 X â
′

m − 1 Y m
)

=
(
Y mc −Xcâ

′

m

)′ (
Xcâ

′

m

)
= âmXcY mc − âmXcY mc = 0

By using the same procedure for the other terms in (16), namely by subtract-
ing and adding the corresponding estimate in each term, the thesis follows.

2

Definition 2. Let Ỹ and X̃1, X̃2, ..., X̃p be LR FRVs satisfying the linear

model (5) observed on n statistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. The
estimator of the determination coefficient R2 is

R̂2 = 1− SSE

SST
=

SSR

SST
.
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It represents the part of total sum of squares explained by the regression
model, so it can be considered as a goodness-of-fit measure and it takes
values in [0, 1]. Furthermore, it can be shown that R̂2 is a strong consistent
estimator.

5. Hypothesis testing

5.1. Hypothesis testing on the regression parameters

The parameters am, al and ar express the strength of the relationship
between the response variable and the explanatory ones. Testing the ex-
plicative power of X consists in testing that the vectors of coefficients am, al

and ar are equal to 0. In general it is possible to test the null hypothesis

H0 :

 a
′
m

a
′

l

a
′
r

 =

 k
′

m

k
′

l

k
′

r


against the alternative

H1 :

 a
′
m

a
′

l

a
′
r

 6=

 k
′

m

k
′

l

k
′

r

 ,

where km, kl, and kr are real-valued vectors. Starting from Ferraro et al.
(2009a), the test statistic to be used is Tn = V ′

nVn, where

Vn =
√

n

 â
′

m − k
′

m

â
′

l − k
′

l

â
′

r − k
′

r

 .

It is important to stress that, since there are not generalized models for
FRVs that can be used in practice and an asymptotic test works suitably for
large size samples, the hypothesis testing problem has been approached by
bootstrapping. The non-parametric bootstrap test is based on the following
algorithm:

14



Bootstrap algorithm

Step 1: Compute the estimates âm, âl, âr and the value of the statistic

Tn = V ′
nVn.

Step 2: Compute the bootstrap population fulfilling the null hypothesis,{
(X i, Z

m
i , Z l

i , Z
r
i )

}
i=1,...,n

, (19)

where

Zm
i = Y m

i −X iâ
′

m + X ik
′

m,

Z l
i = g(Y l

i )−X iâ
′

l + X ik
′

l,

Zr
i = h(Y r

i )−X iâ
′

r + X ik
′

r.

Step 3: Draw a sample of size n with replacement{
(X∗

i , Zm∗
i , Z

l∗
i , Z

r∗
i )

}
i=1,...,n

,

from the bootstrap population (19).

Step 4: Compute the bootstrap estimates â∗m, â∗l , â∗r and the value of the
bootstrap statistic

T ∗
n = V ∗

n

′
V ∗

n .

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B
estimators, denoted by {T ∗

n1, ..., T
∗
nB}.

Step 6: Compute the bootstrap p-value as the proportion of values in {T ∗
n1, ..., T

∗
nB}

being greater than Tn.

5.2. Hypothesis testing on a single parameter

A particular case of the above hypothesis test on the regression parame-
ters is referred to testing the significance of a single regression parameter. In
this way it is possible to check if a given component of the explanatory vari-
ables is significantly related to the LR fuzzy response variable. For example,
let Ỹ and X̃1, X̃2, ..., X̃p be LR FRVs satisfying the linear model (5), to test
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the significance of the left spread of the explanatory variable X̃1 w.r.t. the
center of the response variable Ỹ , it is tested the following hypothesis

H0 : a1
ml = 0

against the alternative

H1 : a1
ml 6= 0.

As for the previous hypothesis test, according to the bootstrap approach, the
above described algorithm can be adopted. The most relevant difference con-
sists in considering a bootstrap population

{
(X i, Z

m
i , Z l

i , Z
r
i )

}
i=1,...,n

, where

Zm
i = Y m

i − â1
mlX

l
1,

Z l
i = g(Y l

i ),

Zr
i = h(Y r

i ).

5.3. Linear independence test

In this section a bootstrap linear independence test is introduced on the
basis of Ferraro et al. (2009b). To test the null hypothesis H0 : R2 = 0

against the alternative H1 : R2 > 0, the test statistic Tn = nR̂2 is used.
Once again, a bootstrap algorithm can be adopted. To obtain a bootstrap
population fulfilling the null hypothesis, the residual variables Zm = Y m −
X â

′

m, Z l = g(Y l)−X â
′

l and Zr = h(Y r)−X â
′

r must be considered. A sample
of size n with replacement

{
(X∗

i , Z
m∗

i , Z
l∗
i , Z

r∗
i )

}
i=1,...,n

from the bootstrap

population is drawn and the bootstrap statistic to be used is

T ∗
n = n

n∑
i=1

D2
λρ(Ẑ

∗T
i , Z∗T )

σ2
Y T

,

where Z∗T
i = (Zm∗

i , Z
l∗
i , Z

r∗
i ).

5.4. Simulation study

Several bootstrap algorithms have been proposed to obtain bootstrap p-
values for testing hypotheses about the determination coefficient and the
regression parameters of (5). By means of a simulation experiment we aimed
at investigating whether the obtained p-values work as such, that is, if we find
a bootstrap p-value equal to 0.05 we would like to conclude from this that the
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true p-value (i.e., that obtained if we knew the distribution function) is 0.05.
The simulation study concerned the test on a single regression parameter and
the linear independence test. During the experiment we employed B = 1000
replications of the bootstrap estimator and we carried out 10.000 iterations
of the test at three different nominal significance levels (α = 0.01, 0.05, 0.1)
for different sample sizes (n = 30, 50, 100, 200, 300). We considered the case

of two LR fuzzy explanatory variables X̃1 and X̃2. We dealt with the fol-
lowing real random variables: Xm

1 and Xm
2 , behaving as Norm(0, 1) random

variables, X l
1 and X l

2 as χ2
1, Xr

1 and Xr
2 as χ2

2, Ym as Norm(0, 1), Y2 = g(Yl)
and Y3 = h(Yr) as Norm(0, 0.5).
With respect to the hypothesis testing on a single parameter, we considered
the test H0 : a1

mm = 0 against the alternative H1 : a1
mm 6= 0. The empirical

percentages of rejection under H0 are given in Table 1.

Table 1: Empirical percentages of rejection under the hypothesis H0 : a1
mm = 0.

n \ α× 100 1 5 10
30 0.75 4.13 8.81
50 1.06 5.67 10.14
100 1.28 5.55 10.85
200 1.28 5.42 10.57
300 1.16 5.62 10.12

With respect to the linear independence test (H0 : R2 = 0 against H1 : R2 >
0), the empirical percentages of rejection under H0 are reported in Table 2.

Table 2: Empirical percentages of rejection under the hypothesis of linear indepen-
dence.

n \ α× 100 1 5 10
30 0.31 2.6 6.87
50 0.79 4.74 9.59
100 1.13 5.65 10.63
200 1.31 5.35 10.77
300 1.09 4.92 10.01

All in all, from Tables 1 and 2 we can conclude that the bootstrap p-values
are fairly good approximations of the true p-values in most cases. As one
may expect, this especially holds for increasing values of n (n > 30).
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6. A real-case study

In a recent study about the student satisfaction of a course the subjective
judgements/perceptions were observed on a sample of n = 64 students. To
formalize the problem we defined Ω={sets of students that attend the course}
endowed with the Borel σ-field. Since the observations were arbitrarily cho-
sen, P is the uniform distribution over Ω. For any i ∈ Ω, three characteristics
were observed. These were the overall assessment of the course, the assess-
ment of the teaching staff and the assessment of the course content. Such
an information was managed in terms of triangular fuzzy variables (hence
λ = ρ = 1/2). In fact, to represent the subjective judgements/perceptions,
the students were invited to draw a triangular fuzzy number for every char-
acteristic. The considered support went from 0 (dissatisfaction) to 100 (full
satisfaction). The students were informed to place the center where they
wished to represent their average judgement/perception and the lower and
upper bounds of the triangular fuzzy number where they wished to represent
their worst and best judgement/perception, respectively. Note that the stu-
dents were informed to compute the average, minimum and maximum values
w.r.t. the variability of their subjective judgements/perceptions depending
on the different course contents and/or members of the teaching staff.
For analyzing the linear relationship of the overall assessment of the course
(Ỹ ) on the assessment of the teaching staff (X̃1) and the assessment of the

course contents (X̃2) (see Table 3), the proposed linear regression model was
employed. To overcome the problem about the non-negativity of spreads esti-
mates, we used the logarithmic transformation (that is, g = h =ln). Through
the LS procedure we obtained the following estimated model

Ŷ m = 1.07Xm
1 + 0.15X l

1 − 0.05Xr
1

−0.18Xm
2 − 0.88X l

2 + 0.77Xr
2 + 2.98

Ŷ l = exp(0.01Xm
1 + 0.02X l

1 + 0.02Xr
1

+0.00Xm
2 + 0.03X l

2 + 0.01Xr
2 + 0.62)

Ŷ r = exp(0.00Xm
1 + 0.03X l

1 − 0.02Xr
1

−0.01Xm
2 + 0.03X l

2 + 0.01Xr
2 + 2.10)

To test the significance of every single regression parameter we computed
the bootstrap p−values given in Table 4. Note that we set B = 1000. With
respect to the model for the center of Ỹ , we can see that, considering a sig-
nificance level α = 0.05, both the centers of X̃1 and X̃2 are significant. Fur-
thermore, also the spreads of X̃2 significantly affect the response Y m. Thus,
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Table 3: Overall assessment of the course (Y m, Y l, Y r), Assessment of the teaching
staff (Xm

1 , X l
1, Xr

1), Assessment of the course content (Xm
2 , X l

2, Xr
2) of the course.

Y m Y l Y r Xm
1 X l

1 Xr
1 Xm

2 X l
2 Xr

2

93 7 7 87 9 7 75 10 8
90 10 10 80 10 10 60 10 30
80 20 10 80 10 20 40 20 13
76 18 14 77 17 15 50 15 15
52 11 12 75 10 5 88 18 2
90 10 10 86 12 11 80 13 17
90 10 10 94 7 6 67 10 14
80 10 20 90 10 10 81 16 19
80 10 10 80 10 10 80 10 10
70 10 15 80 10 20 50 10 10
80 3 3 93 4 7 72 6 8
.. .. .. .. .. .. .. .. ..

we can conclude that taking into account the spreads information of the ex-
planatory variables is a value added. By inspecting Table 4 we can observe
that, considering α = 0.05, only some of the components of X̃2 are signifi-
cantly related to the transformed spreads of Ỹ . When considering α = 0.10,
we find that also some components of X̃1 play a significant role in explaining
the transformed spread of Ỹ (g(Y l)). For the estimated model it resulted

R̂2 = 0.7526, hence approximately almost 75.26% of the total variation of
the overall assessment of the course is explained by the model. Furthermore,
by applying the bootstrap procedure to test the linear independence (with
B = 1000) a p-value equal to 0 was obtained, so the null hypothesis should
be rejected.

7. Concluding remarks

In this work a new linear regression model for LR fuzzy response and
explanatory variables has been introduced and analyzed, by taking into ac-
count different kinds of uncertainty. In particular, through a formalization
in terms of FRVs, we have coped with the randomness and the imprecision of
the data. Furthermore, it has been dealt the problem of the non-negativity
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Table 4: Hypothesis testing on each regression parameter. The underlined values
are significant at α = 0.05, whereas the values in bold also at α = 0.10.

estimate p−value estimate p−value

â1
mm 1.07 0.00 â2

mm -0.18 0.02
â1

ml 0.15 0.70 â2
ml -0.88 0.00

â1
mr -0.05 0.83 â2

mr 0.77 0.00

â1
lm 0.01 0.10 â2

lm 0.00 0.86
â1

ll 0.02 0.39 â2
ll 0.03 0.02

â1
lr 0.02 0.08 â2

lr 0.01 0.01

â1
rm 0.00 0.59 â2

rm -0.01 0.03
â1

rl 0.03 0.21 â2
rl 0.03 0.09

â1
rr -0.02 0.25 â2

rr 0.01 0.21

of the spreads of the response by using suitable transformation functions. In
this way, by a least squares approach, analytic estimators of the regression
parameters, fulfilling some statistical properties, have been obtained. Some
inferential procedures have been developed. In particular, tests on the sig-
nificance of the regression parameters have been stated by bootstrapping.
Furthermore, a determination coefficient and an appropriate estimator have
been introduced and the corresponding bootstrap linear independence test
has been carried out. The suitability of the obtained results has been ana-
lyzed by means of a simulation study and a real-life application.
Future research can be done introducing a selection procedure to obtain
the appropriate number of explanatory variables and addressing the multi-
collinearity problem. Moreover, it could be interesting to develop a fuzzy
regression model able to suitably taking into account, in a different way,
fuzzy sets representing an intrinsically imprecise or intrinsically precise yet
ill-known property (see, e.g., Dubois & Prade, 2009). Specifically, it would be
advisable to suggest a fuzzy regression model based on tools (distance func-
tions, dissimilarity measures, variances) defined in different ways according
to the nature of the property. With particular reference to the concept of
variance for FRV, one can refer to Couso & Dubois (2009) in which three
different definitions of variance are discussed according to the nature of the
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modelled quantity.
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