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In this paper a new dissimilarity measure to identify groups of assets dynamics is pro-
posed. The underlying generating process is assumed to be a diffusion process solution of

stochastic differential equations and observed at discrete time. The mesh of observations

is not required to shrink to zero. As distance between two observed paths, the quadratic
distance of the corresponding estimated Markov operators is considered. Analysis of both

synthetic data and real financial data from NYSE/NASDAQ stocks, give evidence that

this distance seems capable to catch differences in both the drift and diffusion coefficients
contrary to other commonly used metrics.
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1. Introduction

In recent years, there has been a lot of interest in mining time series data. In par-
ticular, financial data are among the most studied data. Although many measures
of dissimilarity are available in the literature (see e.g. Liao, 2005, for a review)
most of them ignore the underlying structure of the stochastic model which drives
the data. Among the few measures which consider the properties of the models
we can mention Hirukawa (2006) which considers non-gaussian locally stationary
sequences, Corduas and Piccolo (2008) who proposed an autoregressive metric as a
distance between ARIMA models, and several information measures based on the
the estimated densities of the processes (see e.g. Kakizawa et. al, 1998).

Needless to say, starting from the Black and Scholes (1973) and Merton (1973)
model, most of models of modern finance rely on continuous time processes. In
particular, in most of the cases the dynamic of underlying process used in option
pricing is assumed to be a diffusion process solution to some stochastic differential
equations. This paper proposes a dissimilarity measure which is particularly tay-
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lored to discretely observed diffusion processes. This measure is based on a new
application of the results by Hansen et. al (1998) on identification of diffusion pro-
cessed observed at discrete time when the time mesh ∆ between observations is not
necessarily shrinking to zero. The theory proposed in Hansen et al. (1998) has been
used in Kessler and Sørensen (1999) and Gobet et al. (2004) in parametric and non
parametric estimation of diffusion processes respectively. The theory is based on
the fact that, when the process is not observed at high frequency, i.e. ∆ → 0, the
observed data become a true Markov process for which it is possible to identify the
Markov operator P∆. The continuous time model is instead characterized by the
inifinitesimal generator Lb,σ, where b and σ are, respectively, the drift and diffusion
coefficients of the process. These two operators are equivalent, in the sense of func-
tional analysis, so if one can estimate the Markov operator from the data it is also
possible to identify the process and in particular the couple (b, σ). The identification
step of this procedure, needs some care (see e.g. Gobet et. al, 2004). In the present
paper, we instead rely on the Markov operator only and use it to build a measure
of dissimilarity between two observed processes. Some form of ergodicity or station-
arity of the underlying process is usually required although these hypothesis can
be relaxed in several directions as, for example, mentioned in Kessler and Sørensen
(1999).

The paper is organized as follows. Section 2 introduces the model and the as-
sumptions. The Markov operator is presented in Section 3. Section 4 studies the
performance of the method. First, the behaviour of the operator is analyzed on sim-
ulated paths when data belong to the same hypothetical groups. Finally, real data
from the NYSE/NASDAQ are analyzed. All the results include a comparison with
other three dissimilarity measures, namely, the Euclidean distance, the short-time
series distance and the dynamic time warping distance. All plots and figures are
contained after the references in Section 5.

2. Model and assumptions

Let I = (l, r),−∞ 6 l < r 6 +∞ be the state space of a time-homogeneous
diffusion process {Xt, t > 0} solution of a stochastic differential of the form

dXt = b(Xt)dt+ σ(Xt)dWt (2.1)

In the expression (2.1), b : I → R and σ : I → (0,∞) represent drift and diffusion
coefficient, while Wt is a standard brownian motion.

Assumption 2.1. The drift and diffusion coefficient are such that the stochastic
differential equation (2.1) admits a unique weak solution Xt.

Let us introduce the scale function and speed measure, defined respectively as

s(x) = exp
{
−2
∫ x

x̃

b(y)
σ2(y)

dy
}
, (2.2)
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with x̃ any value in the state space (l, r), and

m(x) =
1

σ2(x)s(x)
. (2.3)

Assumption 2.2. We assume that

C0 =
∫ r

l

m(x)dx <∞ .

Let, x∗ be an arbitrary point in the state space of Xt such that∫ r

x∗
s(x)dx = +∞,

∫ x∗

l

s(x)dx = −∞ .

If one or both of the above integrals are finite, the corresponding boundary is assumed
to be instantaneously reflecting.

If the Assumption 2.1-2.2 are satisfied, then exists a unique ergodic process Xt

solution for the stochastic differential equation (2.1), with invariant law

µb,σ(x) =
m(x)
C0

=
exp

{
2
∫ x
x̃

b(y)
σ2(y)dy

}
C0σ2(x)

(2.4)

3. The Markov operator

Consider now the regularly sampled data Xi = X(i∆), i = 0, . . . , N , from the
sample path of Xt, where ∆ > 0 and not shrinking to 0 and such that T = N∆.
The process {Xi}i=0,...,N is a Markov process and under mild regularity conditions,
all the mathematical properties are embodied in the transition operator

P∆f(x) = E{f(Xi)|Xi−1 = x} .

Notice that P∆ depends on the transition density between Xi and Xi−1, so we put
explicitly the dependence on ∆ in the notation. This operator is associated with
the infinitesimal generator of the diffusion Lb,σ which is the following operator on
the space of continuous and twice differentiable functions

Lb,σf(x) =
σ2(x)

2
f ′′(x) + b(x)f ′(x) .

When the invariant density µ = µb,σ(·) of the process Xt exists, the operator is
unbounded but self-adjoint negative on L2(µ) = {f :

∫
|f |2dµ < ∞} and the

functional calculus gives the correspondence (in terms of operator notation)

P∆ = exp{∆Lµ} (3.1)

This relation has been first noticed by Hansen et al. (1998) and Chen et al. (1997).
It was then used in statistics to derive estimating functions based on the eigen-
values of the above problem by Kessler and Sørensen (1999). Indeed, to estimate
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parametrically the coefficients σ(x) = σθ(x) and b = bθ(x) of (2.1) it suffices to
notice that

Lθf(x) =
σ2
θ(x)
2

f ′′(x) + bθ(x)f ′(x)

can be seen as an eigenvalue problem Lθψθ(x) = κθψθ(x) and the pair (κθ, ψθ)
satisfies

P∆ψθ(Xi) = E{ψθ(Xi+1)|Xi} = exp(κθ∆)ψθ(Xi) .

When the solution is available it is then possible to impose a set of moment condition
from which estimating functions are obtained. More recently, under low sampling
rate, the result (3.1) was used to estimate non parametrically the drift and diffusion
coefficient by Gobet et al. (2004). Indeed, consider the explicit form of the invariant
law µb,σ in (2.4) and define S(x) = 1/s′(x) = 1

2σ
2(x)/µb,σ(x) (see also Aı̈t-Sahalia,

1996). Being ν1 the largest negative eigenvalue of Lµ,σ, the following eigenvalue
problem can be written

Lb,σu1(x) =
1

µb,σ(x)
(S(x)u′1(x))′ = ν1u1(x)

from which S(x)u′1(x) = ν1

∫ x
l
u1(y)µb,σ(y)dy. Finally,

σ2(x) =
2ν1

∫ x
l
u1(y)µb,σ(y)dy

u′1(x)µb,σ(x)
(3.2)

and

b(x) = ν1

u1(x)u′1(x)µb,σ(x)− u′′1(x)
∫ x
l
u1(y)µb,σ(y)dy

u′1(x)2µb,σ(x)
(3.3)

When P∆ can be estimated properly from the data, the pair (u1, ν1) can be obtained
as well and then plugging these values into the above expressions (3.3) and (3.2)
estimators of b(·) and σ(·) are obtained.

In this paper, we propose to use an the estimator of P∆ and from this build a
distance between discretely observed diffusion processes.

For a given L2-orthonormal basis {φj , j ∈ J} of L2([l, r]), where J is an index
set, following Gobet et. al (2004) it is possible to obtain an estimator P̂∆ of <
P∆φj , φk >µb,σ with entries

(P̂∆)j,k(X) =
1

2N

N∑
i=1

{φj(Xi−1)φk(Xi) + φk(Xi−1)φj(Xi)} , j, k ∈ J (3.4)

The terms (P̂∆)j,k are approximations of < P∆φj , φk >µb,σ , that is, the action of the
transition operator on the state space with respect of the unknown scalar product
< ·, · >µb,σ and hence can be used as “proxy” of the probability structure of the
model.

We remark that, like the invariant density µb,σ, the Markov operator itself can-
not perfectly identify the underlying process, in the sense that, for some (b1, σ1)



September 18, 2008 10:51 WSPC/INSTRUCTION FILE clusterSDE

Clustering Diffusion Processes 5

there might exist another couple (b2, σ2) such that µb1,σ1(x) = µb2,σ2(x) and the
same applies to the infinitesimal generator and hence to the Markov operator. So in
this sense, the identification cannot be precise: unicity is not guaranteed. Neverthe-
less, the measure proposed in the next section, can only help in finding similarities
of two (or more) processes in terms of the action of the Markov operator on the ap-
proximating space generated by the basis of L2 above. Indeed, the Markov operator
also takes into account the transition properties of the observed sequence which is
the natural way to make inference from discretely observed diffusion processes.

4. Analysis of performance of the proposed method

In this section we consider four different distances to be used in both the analysis
of synthetic data and on real financial time series. For an updated review on time
series dissimilarity measures see Liao (2005). In the following, we will denote by
X = {Xi, i = 1, . . . , N} and Y = {Yi, i = 1, . . . , N} two generic paths. We will
consider the following measures

The Markov-Operator distance Following the suggestion in Reiß(2003) we use
a basis of 20 orthonormal B-splines on a compact support (see Ramsay and Silver-
man, 2005) of degree 10. As compact support we consider the observed support of
all diffusion paths enlarged by 10%. In the analysis of synthetic data, the support
is just the interval [0,1]. Then we define the Markov Operator distance as follows

dMO(X,Y ) =
∑
j,k∈J

[(P̂∆)j,k(X)− (P̂∆)j,k(Y )]2

where (P̂∆)j,k(X) is calculated as in (3.4).

Short-Time-Series distance Proposed by Möller-Levet et al. (2001) is based on
the idea to consider each time series as a piecewise linear function and compare the
slopes between all the interpolants. It reads as

dSTS(X,Y ) =

√√√√ N∑
i=1

(
Xi −Xi−1

∆
− Yi − Yi−1

∆

)2

This measure is essentially design to discover similarities in the volatility between
two time series regarding of the average level of the process, i.e. one process and a
shifted version of it will have zero distance.

The Euclidean distance The usual Euclidean distance is one of the most used in
the applied literature, in particular in one step ahead prediction. We will calculate
it as follows

dEUC(X,Y ) =

√√√√ N∑
i=1

(Xi − Yi)2
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and use only for comparison purposes.

Dynamic Time Warping distance The Euclidean distance is very sensitive to
distortion in time axis and may lead to poor results for sequences which are similar,
but locally out of phase (Corduas, 2007).The Dynamic Time Warping (DTW) was
introduced originally in speech recognition analysis (Sakoe and Ciba, 1978; Wang
and Gasser, 1997). DTW allows for non-linear alignments between time series not
necessarily of the same length. Essentially, all shiftings between two time series
are attempted and each time a cost function is applied (e.g. a weighted Euclidean
distance between the shifted series). The minimum of the cost function over all
possible shifting is the dynamic warping distance dDTW . In our applications we use
the Euclidean distance in the cost function and the algorithm as implemented in
the R package dtw (Giorgino, 2007).

4.1. Analysis of synthetic data

We simulate 10 paths Xi, i = 1, . . . , 10, according to the combinations of drift bi
and diffusion coefficients σi, i = 1, . . . , 4 presented in the following table

σ1(x) σ2(x) σ3(x) σ4(x)
b1(x) X10, X1 X5
b2(x) X2,X3 X4
b3(x) X6, X7
b4(x) X8

where

b1(x) = 1−2x, b2(x) = 1.5(0.9−x), b3(x) = 1.5(0.5−x), b4(x) = 5(0.05−x)

and

σ1(x) = 0.5 + 2x(1− x), σ2(x) =
√

0.55x(1− x)

σ3(x) =
√

0.1x(1− x), σ4(x) =
√

0.8x(1− x)

The process X9 = 1−X1, hence it has drift −b1(x) and the same quadratic variation
of X1 and X10.

We simulate each path using (second) Milstein scheme (see e.g. Kloden et al.
1999 or Iacus, 2008) with time lag δ = 1e− 4 each path of length 50,000. Observa-
tions have been then resampled at rate ∆ = 0.1, so the observed path used in the
estimation have length N = 500. The sample path of process X9 is a reflection of
the sample path of X1 around 1, i.e. X9 = 1 - X1. The final paths are reported in
Figure 1

After applying the distance dMO, dSTS , dEUC and dDTW we run hierarchical
clustering with complete linkage method. To make the output graphically compa-
rable we rescale all distance matrixes to (0,1). This rescaling only gives the feeling
of relative distance of observations, so numerical values are not really comparable
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from one distance to another. Figure 2 shows the final classification. From the plots
it appears quite evident, that apart from scaling, that dSTS and dEUC agrees but
unfortunately in this example, do not correctly classify the paths. The processes
X1 and X10 are driven by the same stochastic differential equation although their
initial values are different, while this difference increases the distances dSTS and
dEUC the Markov operator distance dMO seems to correctly catch the similar ef-
fect of drift and diffusion coefficient on the path. Similarly for X9 which is just a
reflection of X1 around 1. In Figure 2 it easy to see that while dMO puts X1 and
X10 together and this cluster together with X9, the other two distance put X9 in
a separate cluster which is then aggregated with trajectories in different clusters
not really related to X9 in terms of drift and diffusion coefficients. Processes X2
and X3 are also driven by the same stochastic differential equation and this is cap-
tured also by the other two distances although dMO put X2 and X3 in the smaller
cluster and then aggregate with X4 which has the same drift as X2 and X3 but
a different diffusion coefficient. The other two methods put X3 and X4 together
and then aggregate X2. A similar situation occurs for X6 and X7 which have the
same stochastic differential equations which clearly separated by dMO and not for
the other two distances. Finally, dMO clearly separates X8 which is the real outlier
in terms of drift and diffusion coefficient. This fact is not captured by the other
measures.

4.2. Analysis of real financial data

We consider the time series of daily closing quotes, from 2006-01-03 to 2007-12-31,
for the following 20 financial assets: Microsoft Corporation (MSOFT in the plots),
Advanced Micro Devices Inc. (AMD), Dell Inc. (DELL), Intel Corporation (IN-
TEL), Hewlett-Packard Co. (HP), Sony Corp. (SONY), Motorola Inc. (MOTO),
Nokia Corp. (NOKIA), Electronic Arts Inc. (EA), LG Display Co., Ltd. (LG),
Borland Software Corp. (BORL), Koninklijke Philips Electronics NV (PHILIPS),
Symantec Corporation (SYMATEC), JPMorgan Chase & Co (JMP), Merrill Lynch
& Co., Inc. (MLINCH), Deutsche Bank AG (DB), Citigroup Inc. (CITI), Bank of
America Corporation (BAC), Goldman Sachs Group Inc. (GSACHS) and Exxon
Mobil Corp. (EXXON). Quotes come from NYSE/NASDAQ. Source Yahoo.com.
Missing values have been linearly interpolated. These assets come from both elec-
tronic hardware, appliance and software vendors or producers, financial institutions
of different type and a petrol company. Figure 4 represents the 20 paths of the
assets all on the same scale in order to make them comparable in a visual inspec-
tion. It is clear that some titles have larger volatility than others and possibly there
some outlier in terms of both trend and volatility. For example, looking at financial
companies, one can notice that MLINCH, DB amd GSACHS, although at different
volatility levels, all present the same (cyclic) drift behaviour over time. Further, CIT
and BAC seems quite close in terms of volatility and drift. But visual inspection
alone is not sufficient so try to discover clusters using the for distances introduced
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before. Figure 5 reports the four different dendrograms for the four metrics. While
all methods seems to separate DB and GSACHS, only dMO seems to collect most
of financial companies in the same parent cluster. Our metrics clearly separates
BORL (as an outlier or singleton) in a cluster very far form the other observed
paths. Also dTW and dEUC tend to separate BORL as well, but the identified clus-
ter is closer to other observations than other clusters. The metric dSTS does not
appear to give sharp indication on how to separate clusters. Indeed, if we decide
to split the dendrogram into four clusters, dMO separates BORL in one cluster,
DB, GSACHS, MLINCH and EXXON in the secod cluster, a group of hardware
producer (mostly) and a final group of less active financial assets (CITI, JPM) and
appliance producers or hardware assemblers (SONY, PHILIPS, HP). EA goes to-
gether with SONY in all dendrograms, which is not an unrealistic evidence in that
the company essentially produces software for game consoles. Figure 6 present the
multidimensional scaling of the distance matrix in which groups identified by the
cluster are plotted with the same symbol and, when cluster contain more than two
elements, the ellipsoid hull is also drawn.

The present very superficial analysis of the clustering should not go in depth
with financial implications of the results. Nevertheless, the conclusion of the analysis
is that, although all metrics have pros and cons because they look at single different
aspects, the Markov operator distance seems able to discriminate discrepancies in
both volatility and drift of the observed processes. It also give a sharp indication
on where to cut the dendrogram to obtain comparable groups.
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Fig. 1. Paths of different processes simulated according to Section 4.1.
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Fig. 2. Clustering according to different distances.
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Fig. 5. Clustering according to different distances.
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Fig. 6. Multidimensional scaling on the distance matrix dMO. Observations in the same cluster

are plotted with the same symbol. If a cluster contains more than two observation, the ellipsoid

hull is also represented.


