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Abstract: In the poverty analysis framework, a great deal of attention has been paid to the 
poverty measurement in terms of monetary variables, such as income or consumption. In this 
context, a relevant open problem is connected with the distinction between poor and non-
poor. In fact, the concept of poverty is rather vague and cannot be defined in a clear way. In 
this respect, following a fuzzy logic approach, some new poverty measures are proposed. In 
particular, the fuzzy extension of two existing poverty measures based on the Gini and 
Bonferroni inequality indices is provided. Some synthetic and real applications are given in 
order to show how the proposed poverty measures work. 
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1. Introduction 
In the last few decades, a great deal of attention has been paid to the analysis and 
measurement of poverty in order to understand the phenomenon and make the policy makers 
able to defeat it. Poverty measurement is mainly evaluated in terms of monetary variables 
(e.g. income, consumption). However, for the sake of completeness, it is worth mentioning 
that poverty analysis can be addressed considering not only monetary variables but also other 
features concerning living conditions. See, for instance, Bourguignon and Chakravarty (1999, 
2003) and Deutsch and Silber (2005).  
In the income (or consumption) poverty framework, a relevant open problem is connected 
with the distinction between poor and non-poor. This is usually done by distinguishing the 
observation units according to a pre-specified income threshold called poverty line. If the 
associated income is lower (higher) than the poverty line, then the observation unit is poor 
(non-poor or rich). Unfortunately, such a procedure may often lead to questionable results. 
This is so because the concept of poverty is rather vague. In this connection, a promising line 
of research is the measurement of poverty following a fuzzy logic approach. The fuzzy logic 
theory is a precise theory for dealing with imprecision. In the literature, a lot of works involve 
the use of fuzzy logic for the measurement of poverty. See, for instance, Cerioli and Zani 
(1990), Dagum et al. (1992), Chiappero Martinetti (1994, 2000), Cheli and Lemmi (1995), 
Dagum and Costa (2004), Lemmi and Betti (2006), Betti and  Verma (2008).  
In the present paper, the poverty measurement is investigated following a fuzzy logic 
approach and some new poverty measures will be derived. A deeper insight into the existing 
differences between the classical and fuzzy logic approaches is given in the next section, 
where the potentialities of the latter are clarified and discussed. Then, in Section 3, we recall 
two classical poverty measures based on the Gini and Bonferroni inequality indices. Section 4 
is devoted to the fuzzy logic extension of the above mentioned poverty measures. Section 5 
concerns two applications to synthetic and real data. Finally, in Section 6, a discussion about 
the fuzzy logic approach to poverty is made. 
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2. Classical and fuzzy logic approaches to poverty measures 
Let X be the distribution of a monetary variable concerning a set of n observation units. For 
instance, without loss of generality, we suppose that X denotes an income distribution. 
Specifically, we indicate by xi the income of the i-th observation unit (i=1,…,n) and we 
assume that (0≤)x1≤x2≤…≤xn. Our primary interest relies in assessing whether a given 
observation unit can be considered poor or not. The classical approach to poverty mainly 
consists of introducing a poverty line, say xP, and concluding that the generic i-th observation 
unit is poor when xi<xP (and rich otherwise). In this respect, a very extensive line of research 
can be found in the literature. See, for instance, Foster  (1984), Atkinson (1987, 1992), Foster 
and Shorrocks (1988), Shorrocks (1995), Bourguignon and Fields (1997), Chakravarty 
(1997), Xu and Osberg (2002), Chakravarty and Muliere (2004), Bresson (forthcoming). 
Unfortunately, this approach can often be limited. For example, suppose to deal with three 
observation units (x1, x2 and x3) such that x1=xP-ε, x2=xP+ε (with ε>0) and x3>>xP. Following 
the classical approach to poverty, we conclude that the first observation is poor, whereas the 
remaining two are rich. However, this contradicts the common human thinking. Let us start 
with observations 1 and 2. From a mathematical point of view, as x1=xP-ε and x2=xP+ε, the 
former observation is considered poor and the latter rich. Conversely, from a practical point of 
view, both observations can be evaluated as poor. In fact, also observation 2 is approximately 
poor because her/his income is very close to the poverty line, even if slightly higher than. 
Also the conclusion about observations 2 and 3 is in contrast with the human common-sense 
reasoning. In fact, both observations are considered rich, whereas it seems to be more 
appropriate to conclude that the former is rich to some very limited extent and the latter is 
definitively rich.  
The above example shows that the classical approach to poverty can be inadequate. The 
reason why relies in the fact that several real life phenomena, such as poverty, are affected by 
vagueness. Generally speaking, the vagueness associated to the concept of poverty can be 
highlighted with respect to at least two characteristics. First, it is not reasonable that, when the 
income of an observation increases by a very small amount (as is 2ε in the previous example), 
such an observation moves from the poor status to the rich one (as is for observations 1 and 
2). Furthermore, it would be desirable to classify some observations as borderline poor (or 
poor to some extent) in order to suitably distinguish different levels of poverty (as is for 
observations 2 and 3). See also Qizilbash (2006). To this purpose, fuzzy logic (Zadeh, 1965) 
seems to be a more promising tool of research. In a fuzzy logic setting we assume that there 
exist a poverty line xP and a richness line xR (xP<xR). The generic i–th observation is 
considered poor (non-rich) if  xi<xP. In a similar way, we say that the i–th observation is rich 
(non-poor) when xi≥xR. Finally, when xP≤xi<xR, we can conclude that the i–th observation 
belongs to a limbo corresponding to the non-poor & non-rich case. Hence, since the i–th 
observation cannot be considered rich, it follows that such an observation is poor to some 
extent. Therefore, we no longer distinguish poor and rich (non-poor) observation units in a 
dichotomous way. Rather, following the fuzzy logic approach, we assign to every observation 
unit a degree of poverty ranging from 0 to 1 according to the corresponding income. This can 
be done by introducing the so-called membership function (of an observation i to the attribute 
‘poor’). In particular, if X~  indicates the attribute ‘poor’ (the symbol ‘~’ denotes that a fuzzy 
logic approach is adopted), the membership function →+R:~Xμ  [0,1] allows us to express to 
which extent the i–th observation is poor. This is done by quantifying the degree according to 
which xi belongs to X~ . The membership function can be defined as 
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where β is a positive parameter tuning the decreasing trend of f. In particular, when β =1 such 
a trend is linear. Note that, in this case, the membership function in (1) coincides with that 
proposed by Cerioli and Zani (1990). When β <1, the decreasing trend is more rapid with 
respect to the linear case. The opposite comment holds when β >1. Thus, the membership 
function ranges from 0 (complete non-membership: the i–th observation is non-poor or rich) 
to 1 (full membership: the i–th observation is poor). See, for further details about fuzzy logic, 
Dubois and Prade (1980, 1988) and Zimmermann (2001). 

Note that rewriting the concept of poverty in terms of membership function according to 
the classical approach leads to 
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from which it should be clear that an observation unit can be considered strictly either poor or 
non-poor (tertium non datur). 

To further clarify the fuzzy approach to poverty, let us introduce the following example. 
Suppose to set β =1, xR=1,000 and xP=3,000. By means of (1), if xi=800 we get that the i–th 
observation unit is poor with membership function equal to 1 (i.e. s(he) is definitively poor), 
if xi=3,400 we conclude that (s)he is poor with membership function equal to 0 (i.e. (s)he is 
rich), if xi=1,200 we obtain that the i–th observation unit is poor with membership function 
equal to 0.9 (i.e. (s)he is non-poor & non-rich). Thus, her/his income implies that the i–th 
observation can be considered neither completely rich nor completely poor. We can say that 
s(he) is poor with degree 0.9 and rich (non-poor) with degree 0.1.  

 
3. A review of some poverty measures following the classical approach 

In the literature, there is a wide range of works devoted to the development of measures 
for evaluating the deprivation level of a population. See, for instance, Sen (1976), Kakwani 
(1980), Chakravarty (1983, 1997), Atkinson (1987), Haagenars (1987), Yaari (1988), 
Shorrocks (1995), Jenkins and Lambert (1997), Aaberge (2001), Giorgi and Crescenzi (2001). 
For a detailed review one can refer to Chakravarty and Muliere (2004). 

In this paper, we focus our attention to the poverty measures proposed by Sen (1976) 
and Giorgi and Crescenzi (2001). The former is based on the Gini index (Gini, 1914), whereas 
the latter on the Bonferroni one (Bonferroni, 1930). In order to recall the above mentioned 
measures, it is fruitful to define the following “ingredients” to be used in their set-up. First of 

all, let ∑
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i
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}{  be the number of poor, where U denotes the indicator function. 

With regard to the poor observation units, the poverty-gap associated to the i–th observation 
is i P ig x x= − . Thus, gi is the (positive) difference between the poverty threshold xP and the 
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income mean over the p poor observation units is ∑
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The ratio in (3) is usually known as the poverty-gap ratio of the poor. It compares the average 
poverty-gap g  (at the numerator) and the poverty threshold xP. It is easy to see that I takes 
values in [0,1]. When I=0, the income distribution does not contain poor observation units. On 
the contrary, if I=1, all the p poor are such that x1=...=xp=0. Thus, the bigger I is, the poorer 
the observations are. The index in (4) is the Gini coefficient computed among the poor. Note 
that GP takes scores in [0, (p-1)/p]. As it is well-known, it represents a measure of inequality. 
A low level of the Gini coefficient indicates approximately equal values in the income 
distribution, while the opposite comment holds in the case of a high level of the Gini 
coefficient. In particular, GP=0 corresponds to perfect equality (all the poor have exactly the 
same income) and GP=(p-1)/p to perfect inequality (among the poor, one  has all the income, 
while everyone else has zero income). Note that the Gini coefficient among the poor is equal, 
up to the constant (p-1)/p, to the Gini concentration index among the poor RP, implicitly 
defined in (4). It is worth noticing that RP takes scores from 0 (perfect equality) to 1 (perfect 
inequality). Finally, (5) is the head-count ratio. It expresses the relative amount of poor in the 
income distribution. Obviously, H ranges from 0 (no poor in the distribution) to 1 (all poor).  

By taking into account the ratios in (3)-(5), Sen (1976) suggests the following poverty 
measure: 
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It takes values in [0,1]. S is equal to 0 when there are no poor and equal to 1 when all the 
observation units have no income (x1=…=xn=0). It is important to note that Sen (1976) 
proposes (6) according to an axiomatic framework. In particular, Sen (1976) introduces a set 
of desirable axioms that a deprivation measure must fulfil and proves that S is the only 
measure satisfying these axioms.  

A modification of S has been proposed by Giorgi and Crescenzi (2001), who suggest 
using the Bonferroni index in place of the Gini one. The Bonferroni index B (see, e.g., Giorgi, 
1998; Chakravarty, 2007) is defined as 
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and, among the poor, as 
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where m denotes the income mean computed over the entire distribution. As for the Gini ratio, 
also B is an inequality index taking scores ranging from 0 (perfect equality) to 1 (perfect 
inequality). The need for the Bonferroni index instead of the Gini one mainly relies in the fact 
that the former is more sensitive than the latter to the poorest observation units belonging to 
the income distribution. Furthermore, it can be shown that, if an amount of income moves 
from a donor to a recipient, the variation of the Gini ratio depends only on the distance 
between their ranks, whereas the variation of the Bonferroni index depends also on their exact 
positions in the income ordering. This provides a more powerful tool for assessing the level of 
deprivation. As a consequence, from a theoretical point of view, we can conclude that poverty 
measures based on BP should be more powerful than those based on GP for inspecting an 
income distribution. See, for more details, Giorgi and Crescenzi (2001). 

In an axiomatic framework, the Giorgi and Crescenzi (2001) measure is given by 
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By comparing (6) and (9), it is easy to see that the main difference relies in the use of GP 
(weighted by p/(p+1)) in S and that of BP  (weighted by (p-1)/p) in SB.     

 
4. Some proposals of poverty measures following the fuzzy logic approach 

In this section, we extend in a fuzzy logic approach the measures recalled in (6) and (9). 
This will be done by generalizing the above poverty measures making use of the fuzzy logic 
definition of poverty given in (1). From a practical point of view, this implies the 
development of suitable extensions of the ratios and indices in (3)-(5) and (8). 

The first step towards the fuzzy logic generalization of (6) and (9) involves a different 
way to assess whether the observations are poor. In fact, this should be done considering not 
only the (completely) poor observations (those with membership function equal to one) but 
also the poor to some extent (those with membership function strictly between 0 and 1), 
already labelled as non-poor & non-rich. As a consequence, the evaluation of the number of 
poor p can be extended by considering the sum of the membership functions of all the n 
observation units (the membership function of a rich is zero): 
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where the symbol ‘tilde’ is used in order to highlight that the fuzzy logic approach is 
adopted1. It is easy to see that p p≥% . Moreover, we denote by r and r  the numbers of rich 
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Following the fuzzy logic approach the poverty-gap ratio in (3) can be extended as 

                                                 
1  It is important to remark that the symbol ‘tilde’ is usually used for denoting a fuzzy set. However, in 
(10) as well as in the sequel, this symbol will be used for denoting (non-fuzzy) quantities based on the fuzzy 
logic approach to poverty. 
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with i R ig x x= −% . Thus, the gap is no longer computed with respect to the poverty line but 
with respect to the richness line. Therefore, it appears to be more suitable to refer to (11) as 
the non-richness-gap ratio of the non-rich. This is obtained dividing the weighted mean of the 
non-richness-gaps (using the values of the membership function in (1) as system of weights) 
by the threshold value xR.  

The fuzzy logic extensions of GP and BP can be developed by suitably modifying the 
quantities mP and im , 1, , 1i p= −K . First of all, in a fuzzy logic context, attention should be 
paid to the r  non-rich (not only to the p poor). Moreover, these average values can be 
computed considering the system of weights given by the membership function information. 
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, 1, , 1i r= −K , which is the fuzzy logic counterpart of im , 1, , 1i p= −K . It 

is useful to note that, in Rm~  and im% , 1, , 1i r= −K , the richer observation units play a less 
relevant role, if compared with the poorer ones, since the membership function decreases 
when the income increases. On the basis of the above indices, the fuzzy logic generalizations 
of the Gini coefficient and the Bonferroni index among the non-rich are  
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Finally, in a fuzzy logic setting, the Head Count ratio in (5) can be generalized considering 
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Proposition 1. The ratios in (11), (13) and (14) take values in [0,1], whereas the coefficient in 
(12) in [ rr /)1(,0 − ]. 
Proof. See Appendix.  

 

Remark 1. Let us suppose to deal with an income distribution such that 0r p− = . In other 
words, there do not exist observation units belonging to the non-poor & non-rich limbo. In 
this case, for each observation unit, the membership function in (1) takes only two values: 0 if 

i Px x<  and 1 if i Rx x≥ . One may expect that the values of the extended ratios and indices in 
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(11)-(14) are the same as for the standard ones in (3)-(5) and (8). In fact, this is so for the Gini 
ratio and the Bonferroni index among the poor as well as for the head count ratio. On the 
contrary, the poverty-gap ratio in (3) and the non-richness-gap ratio in (11) usually give 
different scores even if the non-poor & non-rich limbo is empty. This can be explained and 
motivated as follows. First of all this depends on the fact that the former is built using xP and 
the latter using xR. In this respect, we used different names for referring to the two ratios.  
However, it is important to stress that, in the presence of different results, there is no reason to 
claim that the standard poverty-gap ratio is correct. Rather, since the theory of fuzzy sets 
offers us a greater capability to model the human common-sense reasoning with respect to the 
classical one, one may conclude that (11), based on the fuzzy logic approach to poverty, gives 
more reliable information than (3), based on the classical approach. 

 

In order to derive new poverty measures in a fuzzy logic framework extending the ones 
by Sen (1976) and Giorgi and Crescenzi (2001), we adopt an axiomatic approach. As already 
noted, (6) and (9) satisfy a set of desirable axioms. These are the axioms of monotonicity, 
transfer, poor proportion, normalized poverty value and ordinal rank weights, even if the two 
measures differ in the definition of the weights. (6) and (9) can be expressed as a normalized 
weighted sum of the poverty-gaps gi: 

 ∑
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where K(xP, x) is the normalizing term and wi (xP, x)  is the (non-negative) weight associated 
to the i-th observation. For simplicity of notation, in the sequel we will refer to the weights as 

iw omitting (xP, x). Sen (1976) proposes to weigh the poverty gap of the generic i-th poor by 
using the rank order of i in the interpersonal ordering of the poor. We thus get 1iw p i= + − . 

Giorgi and Crescenzi (2001) suggest setting 
1p

i
j i

w
j=

= ∑  under the assumption that, if the 

position of the i-th poor in the income ordering is low, her/his perception of poverty is high. 
On the basis of (15), the above mentioned axioms determine one and only one poverty 
measure. In particular, the poverty measures in (6) or (9) are uniquely obtained according to 
the chosen weighting system. The normalizing term K(xP, x) is essential in order to satisfy the 
axiom of normalized poverty value. It is worth recalling that, according to such an axiom, if 
all the poor observations have the same income, then the poverty measure must be equal to 
HI. 

In a fuzzy logic context, a similar set-up can be followed. More specifically, we now 
propose two poverty measures in a fuzzy logic setting starting from an extension of (15). In 
fact, we no longer consider the poverty-gaps but the non-richness-gaps. Then, following the 
fuzzy logic approach, the poverty measures can be expressed as a normalized weighted sum 
of the non-richness-gaps: 
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By comparing (15) and (16) we can also see that in (16) the normalizing term and the weights 
are constructed on the basis of the richness level xR, and the weighted sum is computed over 
the r  non-rich. 

Let us now consider the extension of the Sen poverty measure S. The following axiom 
about the weighting system needs to be introduced. 

 

Axiom (Ordinal Rank Weights). The weights being associated with the r  non-richness-
gaps are 
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Remark 2. If in the income distribution there do not exist observation units belonging to the 
non-poor & non-rich limbo, r p=  and all the poor are such that 1)(~ =iX xμ . In this case the 
weighting system in (17) coincides with the one proposed by Sen (1976). In fact, it can be 
proved that iw% = 1p i+ − . 

 

By this axiom, we can see that the weight associated to the i-th non-richness-gap 
depends on the degree of poverty of the observation involved (the poorer the observation is, 
the higher the weight is) and on the degrees of poverty associated to the non-rich, whose 
incomes are higher than i (the higher the number of richer non-rich is, the higher the weight 
is).  

The fuzzy logic extension of (6) is obtained according to the following theorem. 
 

Theorem 1. The only measure expressed in terms of (16) using (17) as system of weights, 
which satisfies the axiom of normalized poverty value is 
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Proof. See appendix.  
 

The poverty measure in (18) is the fuzzy logic extension of S. 
The fuzzy extension of SB can be obtained in a similar way. First of all, a new system of 

weights is introduced.  
 

Axiom (Ordinal Rank Weights). The weights being associated with the r  non-richness-
gaps are 
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By comparing (17) and (19), one can see that the only difference concerns the numerator in 
the sum.  

 

Remark 3. When there do not exist observation units belonging to the non-poor & non-rich 
limbo, the weights in (19) coincide with the ones proposed by Giorgi and Crescenzi (2001). In 

fact, we have that iw% =
1p

j i j=
∑  taking into account that r p=  and 1)(~ =iX xμ  for all the poor. 

 

The following theorem is useful in order to derive the fuzzy logic extension of (9).  
 

Theorem 2. The only measure expressed in terms of (16) using (19) as system of weights, 
which satisfies the axiom of normalized poverty value is 
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Proof. See Appendix.  
 

The poverty measure in (20) is the fuzzy logic extension of SB. 
 
4.1. Poverty axioms fulfilled by %S  and %BS  
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The fuzzy poverty measures S%  and BS%  satisfy some desirable poverty axioms. We 
already saw that such measures fulfil the following two properties. 

 

Axiom NPV (Normalized Poverty Value). If all the poor have the same income then the 
poverty measures are equal to HI% % . 

 

Axiom ORW (Ordinal Rank Weights). The non-richness-gaps concerning the r  poorest 
are weighted by means of the system of weights in (17) for S%  and (19) for BS% . 

 

In a fuzzy logic context, Chakravarty (2006) suggests a set of axioms for multi-dimensional 
poverty measures. Here, we consider such axioms limited to the univariate case. We get the 
following results. 

 

Axiom FOC (FOCus). Given the population size n, the poverty measures depend only on the 
non-rich. Thus, the measures do not vary if the income of a rich observation changes. It is 
straightforward to see that S%  and BS%  fulfil the axiom. 

 

Axiom IMF (Increasing Membership Function). Let X and Y be two income distributions 
satisfying nxxx ≤≤≤ K21  and nyyy ≤≤≤ K21  with the same number r  of non-rich. If, 
among the non-rich, it is )()( ~~ iYiX yx μμ ≤ , that is the i-th non-rich in X is equally well-off or 
richer than the corresponding one in Y, then the poverty measure for X is lower than that for Y. 
This property can be proved for S%  and BS%  from an empirical point of view. 

 

Axiom MON (MONotonicity). Poverty decreases if the income of a non-rich increases. In 
fact, it is important to note that Chakravarty (2006) introduces such an axiom in a general 
form. In this work, we consider two levels of monotonicity, limiting our attention to the case 
in which the increase of income does not imply that the observation involved becomes rich. 
- If the increase of income concerns a poor and such an observation remains poor (thus, 

(s)he does not becomes non-poor & non-rich), the non-richness-gap associated to the richer 
observation unit decreases. Since the weights iw% ’s do not change, on the basis of (16), it is 
clear that S%  and BS%  decrease. We may refer to this case as Minimal MONotonicity (M-
MON). 

- If the increase of income concerns a poor becoming non-poor & non-rich or a non-poor & 
non-rich (without becoming rich), the  weights iw% ’s vary. Therefore, the reasoning adopted 
for M-MON is no longer applicable. However, on the basis of empirical analyses, we 
conjecture that S%  and BS%  decrease. We refer to this property as Weak MONotonicity (W-
MON).   

 

Axiom NOR (NORmalitation). If all the observation units are rich, then the measures are 
equal to zero. In this case, it is 0H =%  and, therefore, 0BS S= =% % . 

 

Axiom NPG (Non-Poverty Growth). Poverty decreases if a rich is added to the income 
distribution. In this case, RG% , RB%  and I%  do not change. On the contrary, H%  decreases since 

its denominator increases. It follows that S%  and BS%  decrease. 
 

Axiom SCI (SCale Invariance). The poverty measures are invariant under scale 
transformations of the income. Let X and Y be two income distributions with X=cY with c>0. 
The threshold values are xP=cyP and xR=cyR. It is i

Y
iRiRi

X gcyycxxg ~)(~ =−=−=  and, hence, 
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~~~~ , where the subscripts help us to specify the income distributions. 

Moreover, it is ),(~)/1(),(~ yyKcxxK RR = . Therefore, taking into account (16), it follows that 
SS YX ~~

=  and B
Y

B
X SS ~~

= .  
 

Axiom SYM (SYMmetry). Any characteristic other than the income information does not 
affect the measurement of poverty. S%  and BS%  fulfil the axiom. 

 

Axiom TRP (TRansfer Principle). Poverty increases in the case of an income transfer from 
a poor to some extent (poor or non-poor & non-rich) to anyone who is richer. As it was done 
for MON, we limit our attention to some specific cases.  
- If the transfer occurs between two poor with no one changing her/his status (we refer to 

this case as Minimal TRansfer Principle (M-TRP)), the transfer does not change the system 
of weights, but affects the non-richness-gaps associated to the two observations involved. In 
particular, if t is the amount of income transfer, the non-richness-gap of the donor increases 
by t, whereas the one of the recipient decreases by t. As the weight associated to the donor is 
higher than that of the recipient (taking into account that the donor is poorer than the 
recipient), from (16) it follows that S%  and BS%  increase. When the transfer occurs between 
two observations belonging to the non-poor & non-rich limbo, the transfer changes the 
system of weights. However, also in this case, we conjecture that the M-TRP property still 
holds. 

- If the recipient is rich (we refer to this case as Weak TRansfer Principle (W-TRP)) and the 
donor is poor, then the transfer increases her/his non-richness-gap without modifying the 
system of weights. Therefore, it is clear that S%  and BS%  increase. When the donor is non-
poor & non-rich, the transfer modifies not only the associated non-richness-gap but also the 
system of weights. However, on the basis of empirical analyses, we get that S%  and BS%  still 
fulfil W-TRP.   

 
5. Applications 

In this section we compute the poverty measures in (18) and (20) as well as their 
counterparts according to the classical approach on two data sets. First a synthetic data set is 
considered. It is composed by two populations of size n=10 on which the income is observed. 
Then a real data set about the Italian population income in 2001 is analyzed. 

 
5.1. Synthetic data  

The data refer to two income distributions, each concerning n=10 observation units and 
are reported in Table 1. 
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Table 1. Income distributions X and Y 
Income distribution X Income distribution Y 

Obs. 
unit i 

Income  
xi (€) 

Classical 
)( iX xμ  

Fuzzy 
)(~ iX xμ  

Obs. 
unit i 

Income  
yi (€) 

Classical 
)( iY yμ  

Fuzzy 
)(~ iY yμ  

1 700 1 1 1 700 1 1 
2 800 1 1 2 800 1 1 
3 950 1 1 3 950 1 1 
4 1,050 0 0.95 4 1,050 0 0.95 
5 1,100 0 0.90 5 1,850 0 0.15 
6 1,150 0 0.85 6 1,900 0 0.10 
7 1,200 0 0.80 7 1,950 0 0.05 
8 2,100 0 0 8 2,100 0 0 
9 2,200 0 0 9 2,200 0 0 
10 2,300 0 0 10 2,300 0 0 

 
We assume that xP=yP=€ 1,000 and xR=yR=€ 2,000. According to these thresholds, we 

can see that there are p=3 poor and 7r =  non-rich in both the distributions. Furthermore, the 
distributions X and Y have poor and rich with the same income values, whereas those 
belonging to the non-poor & non-rich limbo ( 4=− pr  observations) have different incomes, 
with the exception of observation 4. Specifically, in the income distribution X, observations 5-
7 have incomes slightly higher than xP, while, in the income distribution Y, their incomes are 
slightly lower than yR. Therefore, even if such observations are classified as non-poor & non-
rich, their economical status is very different. In fact, the common human sense suggests 
considering those from X as approximately poor and those from Y as approximately rich. 
Only the fuzzy logic approach to poverty allows us to suitably handle such a situation. This 
can be seen in Table 1, which also contains the membership function values according to (1) 
assuming a linear decreasing trend (i.e. β =1) and those resulting from the classical approach 
using (2). In fact, observations 1-3 and 8-10 have the same membership function values (1 
and 0, respectively) adopting either the fuzzy logic or classical approach. On the contrary, the 
use of the classical or fuzzy approach leads to different values of the membership function 
associated to observations 4-7 belonging to the limbo. Following the classical approach they 
are classified as rich because their incomes are (slightly or remarkably) higher than the 
poverty line and their membership function values are equal to 0. Following the fuzzy logic 
approach, the membership function values are higher than 0. In particular, they are poor to a 
very high (low) extent if their incomes are very close to (far from) xP.  

To evaluate the level of poverty in the two distributions we compute the indices S and 
SB obtaining SX=SY=0.0675 and == Y

B
X
B SS 0.0733, where the letters X and Y denote the 

corresponding distribution. Hence, the classical approach to poverty is inadequate to 
distinguish the two income distributions. Obviously, this depends on the too rigid assumption 
according to which the level of deprivation is measured with respect to xP. On the whole, X is 
poorer than Y but this derives from some observations that can be reasonably considered 
neither definitively poor nor definitively rich. From a computational point of view, this occurs 
because the measures in (6) and (9) are built only on the basis of the definitively poor 
observations. 

In view of the fuzzy logic approach, we get 3566.0~
=XS  and 3721.0~

=X
BS  for X and 

2361.0~
=YS  and 2452.0~

=Y
BS  for Y. It is clear that the fuzzy logic approach allows us to 

highlight the existing differences between the two distributions. In fact, the poverty measures 
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for X are uniformly higher than the corresponding ones for Y. We can conclude that, on the 
whole, X is poorer than Y.  

Summing up, this result shows that the fuzzy logic approach is more powerful than the 
classical approach since it allows us to consider also the observations poor to some extent 
when measuring the poverty level of a distribution. In doing so, the flexibility of the fuzzy 
logic approach plays a crucial role. Unfortunately, this requires setting not only the poverty 
threshold xP, but also the richness threshold xR and the shape of the membership function β. 
Thus, one may argue that the classical approach makes things easier because it only needs to  
set xP. By means of a small sensitive analysis we are going to show that the values of the 
poverty measures in (18) and (20) are more stable if compared with those in (6) and (9). In 
other words, we aim at stressing that the ‘black or white’ nature (poor or non-poor) of the 
classical approach to poverty implies that a small change of the parameter xP may lead to 
conflicting results. By contrast, the ‘grey-scale’ nature (poor to some extent) of the fuzzy 
logic approach to poverty implies that small changes of the parameters xP, xR and β do not lead 
to remarkably different conclusions. We thus inspect how S, SB, S%  and BS%  vary by increasing 
or decreasing xP and xR by € 100 and by choosing β =1/2 or β =2 in (1). Note that if β =2 the 
membership function strongly decreases when x>xP. Thus, as soon as the income x is higher 
than xP the corresponding level of poverty strongly decreases, i.e. the observation is rich with 
a fairly high degree. The opposite comment holds if β =1/2. The results of the sensitivity 
analysis are reported in Table 2. 
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Table 2. Results of the sensitivity analysis 
xP xR β SX= SY Y

B
X
B SS =   XS~  X

BS~  YS~  Y
BS~  

1,000 2,000 1 0.3566 0.3721 0.2361 0.2452 
1,000 2,000 1/2 0.3124 0.3247 0.2229 0.2297 
1,000 2,000 2 0.3781 0.3952 0.2467 0.2588 
1,000 1,900 1 0.3384 0.3546 0.2236 0.2305 
1,000 1,900 1/2 0.2957 0.3083 0.2134 0.2195 
1,000 1,900 2 0.3607 0.3787 0.2283 0.2358 
1,000 2,100 1 0.3729 0.3879 0.2545 0.2654 
1,000 2,100 1/2 0.3277 0.3396 0.2365 0.2443 
1,000 2,100 2 

0.0675 0.0733 

0.3937 0.4101 0.2723 0.2879 
900 2,000 1 0.3382 0.3525 0.2285 0.2369 
900 2,000 1/2 0.2801 0.2904 0.2037 0.2095 
900 2,000 2 0.3728 0.3896 0.2443 0.2558 
900 1,900 1 0.3196 0.3342 0.2160 0.2224 
900 1,900 1/2 0.2638 0.2742 0.1940 0.1990 
900 1,900 2 0.3547 0.3722 0.2267 0.2342 
900 2,100 1 0.3551 0.3690 0.2464 0.2566 
900 2,100 1/2 0.2951 0.3052 0.2169 0.2236 
900 2,100 2 

0.0370 0.0389 

0.3890 0.4051 0.2689 0.2837 
1100 2,000 1 0.3733 0.3902 0.2397 0.2492 
1100 2,000 1/2 0.3527 0.3680 0.2347 0.2425 
1100 2,000 2 0.3811 0.3985 0.2487 0.2614 
1100 1,900 1 0.3560 0.3736 0.2266 0.2338 
1100 1,900 1/2 0.3357 0.3517 0.2254 0.2324 
1100 1,900 2 0.3642 0.3825 0.2289 0.2366 
1100 2,100 1 0.3890 0.4051 0.2588 0.2704 
1100 2,100 1/2 0.3681 0.3828 0.2488 0.2576 
1100 2,100 2 

0.1036 0.1144 

0.3963 0.4130 0.2755 0.2919 
Mean 0.0694 0.0755 0.3489 0.3640 0.2358 0.2450 

Standard Deviation 0.0272 0.0309 0.0348 0.0368 0.0195 0.0224 
Coefficient of Variation 0.3923    0.4086    0.0998    0.1011    0.0829    0.0915 
 

By inspecting Table 2 we can see that the poverty measures based on the classical 
approach are highly affected by the choice of xP. The average values are S = 0.0694 and BS = 
0.0755 and the standard deviations Sσ = 0.0272 and BSσ = 0.0309. Thus, the observed 
standard deviations are noticeably high if compared with the sizes of the corresponding 
average values. Hence, we get the coefficients of variation SCV = 0.3923 and BSCV = 0.4086. 
These values are remarkably lower than those observed in the fuzzy logic approach despite 
varying according to the choices of xP, xR and β. Specifically, we can see that XS

CV~ = 0.0998 

and X
BS

CV~ = 0.1011 for X and YS
CV~ = 0.0829 and Y

BS
CV~ = 0.0915 for Y. From Table 2 we also 

observe that S%  and BS%  slightly increase whenever  xP, xR or β increase.  
All in all, we can conclude that the fuzzy logic approach is less sensitive than the 

classical approach with respect to the choices of the threshold values and, in the former case, 
the shape of the membership function. Specifically, it is reasonable to assume that the status 
of an observation with a given income does not strongly vary if xP (or xR or β) slightly 
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increases or decreases. This is consistent with the common human thinking and, therefore, 
with the fuzzy logic approach due to its flexibility. By contrast, this is not the case for the 
classical approach.  

 
5.2. Real data  

In this section we determine the values of S%  and BS%  for a real data set. The data here 
considered come from the 2001 Istat (Italian national institute of statistics) Household Budget 
Survey. Specifically, to measure poverty in Italy, Istat uses a survey based on a sample of 
households. A two-stage cluster sample is adopted where the “primary” sampling units are 
municipalities and the “secondary” sampling units are households. A stratified sampling is 
used for the “primary” sampling units. The main object of the survey is to record expenditures 
made for goods and services (in addition to possible self-consumption) by households. 
However, the survey measures in detail all items relative to consumption expenditures, the 
main socio-characteristics of the household components, the main characteristics of the home, 
the ownership of permanent goods and some information on the wage and savings. The 
available survey database contains all these items relative to monthly consumption 
expenditures (obtained by means of Istat data processing). The total monthly consumption 
expenditure (net from expenses on extraordinary home maintenance, loans and premiums paid 
for life insurance and life annuity that are not part of the economic concept of consumption 
expenses) is the main variable used for analyzing poverty. In fact, to assess whether a given 
household is poor, Istat compares the corresponding total monthly consumption expenditure 
with a (monthly) poverty threshold to be discussed below. Finally, a weight is associated to 
every household in order to obtain suitable estimates of the population statistics. See, for 
further details, Istat (2001). 

To compute S%  and BS%  the following steps are needed. First, we determined the total 
monthly consumption expenditure for every household. However, this is not yet the 
distribution to be analyzed for deriving the values of S%  and BS% . In fact, the standard poverty 
measure (hereinafter, spm) adopted by Istat (following the International Standard of Poverty 
Line) is equal to the mean per capita total monthly consumption expenditure (€ 814.55 in 
2001). Such a poverty threshold is good only for households with two components. Thus it 
must be modified for households with number of members different from two according to 
the equivalence scale (Carbonaro, 1985) reported in Table 3. 
 
Table 3. Equivalence scale 

Household components Normalizing factor (nf) Normalized poverty 
threshold (nspm=814.55/nf) 

1 0.60 488.73 
2 1.00 814.55 
3 1.33 1,083.35 
4 1.63 1,327.72 
5 1.90 1,547.65 
6 2.16 1,759.43 
7 2.40 1,954.92 
≥8 2.62 2,134.12 

 
This allows us to assess poverty for different sized households. However, for our purpose, we 
need to perform the inverse procedure with respect to the one given in Table 3. More 
specifically, rather than normalizing the poverty threshold spm by means of the specific 
normalizing factor nf (and comparing it with the observed total monthly consumption 
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expenditure), we need to normalize every total monthly consumption expenditure. This was 
done by multiplying it by 1/nf according to the household size. For instance, if the observed 
total monthly consumption expenditure of a household with three components is € 1,500, then 
the normalized one is 1,500 / 1.33 = 1,127.82.  
The next step was how to choose the poverty and richness thresholds. To do it, we decided to 
follow some suggestions by Istat (Istat, 2002). A household is considered definitively poor if 
its total monthly consumption expenditure is lower than a percentage of 80% of spm (0.8 × 
814.55 = 651.64). We thus set xP = € 651.64. Similarly, a household is considered definitively 
non-poor (i.e. definitively rich) if its total monthly consumption expenditure is higher than a 
percentage of 120% of spm (1.2 × 814.55 = 977.46). In this way we obtained xR = € 977.46. 
Note also that Istat refers to households with total monthly consumption expenditure between 
€ 651.64 (80% of spm) and € 814.55 (100% of spm) as nearly poor and those with total 
monthly consumption expenditure between € 814.55 (100% of spm) and € 977.46 (120% of 
spm) as almost poor. Therefore, we can say that Istat implicitly considers the concept of 
poverty in a vague way (admitting degrees of poverty) but, unfortunately, without managing it 
by a fuzzy logic approach. In fact, a household considered almost poor would be poor to some 
extent (i.e. with a membership function value strictly lower than one). Nonetheless, this is 
fully missed by Istat which introduces some classical (non-fuzzy) sets (definitively poor, 
nearly poor, almost poor, definitively non-poor) according to the classical approach to poverty 
rather than a unique fuzzy set allowing us to deal jointly with the different degrees of poverty. 
The last step concerned the way to take into account the weights associated to the households, 
say αi’s. In order to estimate the population values of S%  and BS% , suitable modifications of 
(10)-(14) are required. First of all, the number of poor p~  in (10) should be replaced by 
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where r  denotes the number of non-rich observation units in the sample. Furthermore, by 
taking into account the weights αi’s in the definitions of Rm~  and im% , 1, , 1i r= −K , we 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∑∑

∑ ∑

∑

∑
−

==

−

= =

=

−

=

1

11

1

1 1

1

1

1

~

~2
1~

r

j
j

r

j
jR

r

i

i

j
ji

r

j
j

r

j
j

R

m

m
G

αα

α

α

α

α ,      (23) 

∑
∑

−

=
−

=

−=
1

1
1

1

~
~11~ r

i R

ii
r

j
j

R m
mB α

α
α .        (24) 

Finally, (14) can be replaced by  
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and, setting β=1, we found =αS~ 0.1322 and =αBS~ 0.0572.  

To sum up, in the case of sample data, the population poverty measures S%  and BS% can 
be derived. However, to do it, their ingredients in (10)-(14) must be modified in a suitable 
way to take into account the weights associated with the sampling units. This involves 
revisiting S%  and BS%  in (18) and (20) by means of (26) and (27).  
 
6. Discussion 

In this paper, we have followed the fuzzy logic approach for measuring the level of 
poverty in a distribution. This allowed us to evaluate the poverty level of a given observation 
according to a degree (membership function) ranging from 0 (completely non-poor or 
completely rich) to 1 (completely poor). For instance, a degree equal to 0.8 means that the 
observation is poor with a degree equal to 0.8. At the same time, this observation is non-poor 
(rich) with a degree equal to 0.2. Therefore, in the fuzzy logic approach, an observation can 
be simultaneously poor and non-poor with. Of course, this contradicts the classical 
(Aristotelian) logic in which an observation is either completely poor or completely non-poor. 
Generally speaking, poverty is a vague concept. By examples, we have shown that tools based 
on the fuzzy logic approach seem to be more fruitful than those based on the classical ones in 
order to cope with the vagueness associated to the concept of poverty.  

According to the classical approach, several indices have been proposed in the literature 
for measuring the poverty level of a distribution. In this paper, following the fuzzy logic 
approach, we have generalized the well-known poverty measure S based on the classical 
approach provided by Sen (1976) and its extension SB (Giorgi and Crescenzi, 2001) involving 
the use of the Bonferroni index in place of the Gini ratio. The new poverty measures have 
been denoted by S%  and BS% , respectively. The most relevant difference between S and SB, on 

the one hand, and S%  and BS% , on the other hand, is that the former ones are constructed 
considering the p poor whereas the latter ones take into account the r  non-rich, i.e. the 
completely poor and the poor to some extent. Thus, in the fuzzy logic approach, the indices 
cover the gray area of the non-rich and non-poor. If this gray area is fairly large in a society, 
the limitation of using a particular poverty line is obvious. If the distribution contains only 
poor or rich (when p= r ), then the indices based on the classical and fuzzy logic approaches 
give almost equal outputs. We have investigated how S%  and BS%  work by means of some 
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applications on real and simulated data and we have found that they work better than their 
classical counterparts.  

In the literature, starting from Sen (1976), a great deal of attention has been paid to the 
derivation of desirable properties (axioms) that a poverty measure should fulfil. The debate 
mainly focused on the classical approach to poverty. Nonetheless, Chakravarty (2006) 
introduced a set of axioms to be fulfilled by a poverty measure according to the fuzzy logic 
approach. Along the paper, we have shown the axioms satisfied by S%  and BS% . In principle, a 
poverty measure fulfilling all the possible axioms would be the ideal one. Unfortunately, it is 
recognized that there does not exist such an ideal index. Nonetheless, several authors tried to 
improve some existing indices in order to construct more satisfactory measures of poverty. 
For instance, Shorrocks (1995) noted that S is not replication invariant, it is not a continuous 
function of individual incomes and it fails to satisfy the transfer axioms and, to account for 
these drawbacks, proposed a modified version of S, say SMod. However, as remarked by 
Shorrocks (1995), SMod still fails to be subgroup consistent. In the future, it will be interesting 
to provide a modified version of S%  taking into account SMod (hopefully leading to ModS~ , the 
fuzzy logic version of SMod). It is interesting to see that the replication invariant issue can 
easily be accommodated by replacing (18) as 

( ) [ ]{ }RRIMod GIHS ~1)~1(1~~
−−−= .       (21) 

In (21), the asymptotic approximation of S%  is considered with 1
1

→
+r
r

, when the 

population size (and the number of non-rich) is large.  
In the income inequality research, several works about graphical devices such as 

(generalized) Lorenz curve can be found. In other words, the (generalized) Lorenz curve can 
be used for analyzing the relative income differences (see, for instance, Yaari, 1987; Jenkins 
and Lambert, 1997; Aaberge, 2001). An interesting line of research is to provide alternative 
justifications of the proposed indices following the fuzzy logic approach as well as for their 
‘ingredients’, in particular the fuzzy logic versions of the Gini and Bonferroni coefficients. 
This could be done by developing fuzzy logic extensions of the (generalized) Lorenz curve 
and looking for possible geometric interpretations of the here-proposed indices and 
coefficients.  
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Appendix  
 

Proof of Proposition 1. We start considering (11). When all the observation units are rich, it 
is i Rx x≥  and, from (1), 0)(~ =iX xμ . Hence, 0g =%  and, thus, 0I =% . On the contrary, if all the 
observation units are such that 0ix = , we have that i Rg x=%  and 1)0(~ =Xμ . It follows that 

1
1

n

R
i R

R

x
nxg x

n n
=

⋅
= = =

∑
%  and, therefore, 1I =% . 
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If all the (poor) observation units have the same income (perfect equality), say x, we 

obtain x
x

xx
m i

j
X
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j
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i ==
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i
X

r

i
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r ==
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∑

=
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1

~

1

~

)(

)(
~
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, which thus coincide ( xmm ri == ~~ , 

1, , 1i r= −K  with r n= ). Using this in (12) yields 0
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. We 

then get 0RG =% . In the case of perfect inequality, we have x1=…=xn-1=0 and xn=x. Note that, 
since the Gini coefficient is computed among the non-rich, it is x<xR. It follows that 
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Using the same reasoning adopted for RR% , we obtain the following results for RB% . In the 

case of perfect equality, we have 
1

1

11 0
1
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R
i
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r x
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= − =
− ∑% , while, in the vcase of perfect 

inequality, we have 1~
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With regard to the Head-Count ratio in (14), let us start with the case with all rich 

observations. We have 
1

0 0
n

i
p

=

= =∑%  from which 0H =% . When all the observations are poor 

and have zero income, we get 
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i
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In (12), RG%  and, thus, RR%  are based on 
1

1
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i
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By using (A1) and (A4) and bearing in mind the relation between RG%  and RR%  given in (12) 
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Moreover, by exploiting (11), we have that 
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 Upon substituting (A6) in (16), we obtain that 
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In order to fulfil the axiom of normalized poverty value, taking into account (14), it must be 
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The Bonferroni index among the poor in (13), based on 
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Substituting (A10) into (A9) leads to 
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From (A8) and (A11), we have that 
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which coincides with (20) by setting nrx
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