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Abstract

The role of rainfall raingauge observations in calibration of radar derived rainfall estimates
is investigated. The final goal is the reconstruction of the rainfall fields over the observed
area. As a first step, an operational approach commonly used by hydrologists is applied and
results are discussed. In the sequel a space-time approach based on the work of Brown et al.
(2001) and the use of kriging with external drift are applied and compared. Data come from
a dense raingauge network and a weather radar installed in 1992 for the evaluation of a rain
enhancement experiment carried out in Southern Italy. In this paper we report results from one
seeding operation carried out on 11 April 1992.
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1 Introduction

The Rain Project was an Italian randomized rain enhancement plan applying in Puglia and other
regions of Southern Italy, methods and technology of rain enhancement used in the Israeli exper-
iment (Gagin (1981)) were tested. The project was developed in the period 1986-1994 during
which cloud seeding operations were carried out over two experimental, Target and Control, ar-
eas. The selection of these experimental two areas depended entirely on the statistical analysis
of available climatology of the region with special emphasis given to the pluviometric database
and its natural variability. Seeding paths were selected according to the effective upper wind
direction measured in-flight by pilots. Silver Iodide (AgI) in acetone solution was used as
reagent. In 1992, important implementations to the project were introduced. In particular, a
high density network of 80 automated raingauges with high time (10 minutes) and space (∼10
km inter-gauge spacing) resolution was built in the experimental area. Moreover, in the same
year, a C-band digital weather radar, scanning the whole area every five minutes, with software
to analyse the effects of seeding on the vertical structure and on the humidity content of the
seeded clouds was introduced. The seeding campaigns were carried out in different seasons
starting from April 1992 until May 1994, when the project was stopped. The total number
of missions was 132, but operational inconveniences (e.g. radio noise, unclear radar images,
chaotic distribution of echoes, radar failure, unavailable wind reports) reduced the total number
of reliable cases to 116.

The development of several approaches to assess results of seeding, based on experimental
raingauge data and physical evidence, was carried out during this period without obtaining
a clear and definitive answer. One reason for this result is that expected effects of seeding
are almost always within the range of natural variability (low signal-to-noise ratio) and skill
in predicting natural behavior is still limited. Comparison of precipitation observed during
seeded periods with that during historical periods presents problems due to climatic and other
changes in time and therefore is not a reliable technique. This situation has been made even
more difficult by the mounting evidence that climate change may lead to changes in global
precipitation amounts as well as to spatial redistribution of precipitation.

In currently accepted ways of evaluation, randomization methods (target/control, crossover
or single area) are considered the most reliable for detecting cloud-seeding effects. Such ran-
domized tests require a number of cases readily calculated on the basis of natural variability of
the precipitation and the magnitude of the expected effect. In the case of very low signal-to-
noise ratios, as in the present case, experiment duration in the range of five to over ten years
may be required (W.M.O. (2001)). All these reasons raised the need to find alternative ways to
those evaluation procedures previously applied in the Italian Rain Project.

Our idea is to reconstruct the rainfall field (in both space and time), using both radar and
rainfall observations, and use the results to compare Target and Control area estimated rain
amount for each seeding operation in order to assess the efficacy of the experiment.

In this setting, the major benefit in using radar data is the finer spatial description of the
precipitation field that this instrument produces, on the other hand a major disadvantage is the
need to calibrate radar parameters used for converting reflectivity values to rain; this gener-
ally requires the installation of a conventional ground-based rain gauge network. Raingauges’
observations are considered close to the true rainfall and this is why raingauges estimates of
rainfall are used to calibrate radar-based rainfall quantities.

The investigation of the role of raingauges observations in the calibration of radar derived
rainfall estimates for the reconstruction of the rainfall fields becomes a central issue.
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In the following sections the technique of calibrating weather radar using data from rain-
gauges is illustrated. In particular, in section 4 an approach to the calibration process using an
operational technique (Collinge and Young (1993)) is described. This technique involves the
computation of acalibration factorused to adjust rainfall rates produced by the well-known
Marshall-Palmer relationship. In section 5 a space-time approach is proposed. The model,
inspired by the work of Brown et al. (2001), is built as a combination of unidimensional state-
space time series and time-varying kriging surfaces of the dynamic regression model coeffi-
cients. The predictive performance of the model is investigated through empirical validation.
Moreover, a spatial method known as Kriging with external drift, is applied considering rain-
gauges’ data as a random function and the radar data, as the external drift function. Again, the
predictive performance of the model is investigated through empirical validation.
As a further term of comparison, simple Ordinary Kriging of the precipitation measurements
are computed and the empirical MSE at validation sites of the three models are compared and
discussed. Results are reported in section 6.

It is important to stress that the aim of this paper is to investigate the relationship between
rainfall at raingauges and radar reflectance. Several statistical models exist for modelling pre-
cipitation, a task we do not intend to undertake. However we refer the interested reader to
the extensive literature available on this topic; here we report only a brief outline of papers
which have been of inspiration for our work. Dunn (2003) made one of the earliest attempts
introducing a family of distributions that can model the amount of precipitation including those
observations in which zero rainfall is recorded. The works of Sansó and Guenni (2000) and
Sanśo and Guenni (1999) consider a model for daily rainfall based on a truncated normal distri-
bution in a Bayesian framework. In Rodriguez-Iturbe et al. (1987) and Rodriguez-Iturbe et al.
(1988) stochastic point processes based models in space and time are used. A different approach
is considered in Smith (1994) where, as in Stern and Coe (1984), they distinguish between pro-
cesses for wet and dry periods and they introduce a positive skewed distribution for the amount
of rainfall, conditionally on a wet period.

2 Rainfall measurements: wheatear radar and raingauges

Radar serves the estimation of rainfall, either on its own or, more often, in combination with
rain-gauges. Radar data, although sometimes erroneous in magnitude, have the great advantage
that they provide a coherent image of spatial rainfall patterns, which, especially in case of
small-scale convective events and/or coarse rain gauge networks might miss altogether.

A wheatear radar can provide measurements of precipitation intensity over a wide area with
high spatial and temporal resolution, from a single location. But rainfall and radar measure-
ments can be notably different: on one hand the first give a direct measurement, spatially
punctual and time integrated, of ground rainfall; on the other, the second ones provide indi-
rect measurements of precipitation, on the air, and integrated in space and at a given point in
time. To mitigate the sometimes large discrepancies of radar to rain gauge observations numer-
ous techniques have been developed that try to approach radar to rain gauge measurements. In
order to allow a comparison between the two, rain measurements are integrated for a period
of time so that a temporal integration corresponds to a spatial one made by radar (Zawadzki
(1975)).
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In a meteorological radar, a pulse of energy is emitted by the transmitter at a variety of
elevation angles and the returned power, orreflectivity, is measured at a radial resolution of 1
km. Data are expressed in radar reflectivity units of dBZ. This is a measure of the power scat-
tered back to the radar by precipitation particles in the atmosphere. Meteorologists commonly
convert from reflectivity (Z) to a rainfall rate (R) using the Marshall-Palmer law (Marshall and
Palmer (1948)). Unfortunately, the relationship betweenZ and the rainfall rateR (in mmh−1

) is not exact. Most of the conversions, called Z-R relationships, result in the following power
law expression:

Z = aRb (1)

wherea andb are unknown coefficients. Available estimates ofa range from about 30 to 500
andb range from about1.2 to 2.0 (Doviak and Zrnic (1984)).
Relationship of this type should be regarded as empirical, although a strong theoretical justifica-
tion exists for this choice. Actually, both radar reflectivity and rainfall rate can be expressed as
the moment of the drop size distribution within a radar sampling volume. This is where the first
problem appears when using raingauge observations for parameter estimation in the Z-R rela-
tionship. Most raingauges do not measure rainfall rate but rather, rainfall accumulation. This
problem, when combined with the extremely high space and time variability of the rainfall pro-
cess, indicates that no high correlation between raingauge observed rainfall and radar-estimated
rainfall at short time scales (Krajewski (1997)) should be found. Moreover several factors can
affect the precision of radar measurements of rain rate and the actual rain rate at ground level.
Errors could be random, systematic and/or dependent on the distance from the radar (Zawadzki
(1984)). In particular, as the distance from the radar increases, radar measurement quality can
worsen, because of:

1) the presence of a precipitation gradient inside the cell (which becomes larger due to the
divergence of radar beam);

2) the attenuation of the radar signal;

3) the radar signal for low elevations and high distances could be behind the cloud’s base;

4) the variability of the Drop Size Distribution (DSD) at ground level within each storm and
from storm to storm;

5) the minimum detectable signal at far distances.

For these reasons radar measures have to be corrected.
A huge amount of studies covers the issue of comparing radar and raingauge, as Austin (1987),Ciach
and Krajewski (1999), Legates (2000),Matsoukas et al. (1999) and Wood et al. (2000).

Co-kriging and other geostatistical methods (Krajewski (1987)), (Seo et al. (1990)), (Seo
et al. (1990)) are widely used methods to adjust the Z-R-relation to match rain-gauge obser-
vations. However, even sophisticated methods merging rainfall observations from different
devices are limited by the quality of the input data.
Our input dataset is composed of rainfall and reflectivity measurements, collected every ten
minutes and coming, respectively, from the CPP1 network and the weather radar from 1992 to
1994. Data validation is critical as severe errors in data analysis and modelling results can be
caused by erroneous individual data values. In addition, before performing any analysis, con-
siderable attention was devoted to data quality control, for details see Orasi and Jona-Lasinio

1Raingauges network installed in 1992 for the evaluation of the Rain Project. CPP stays forControllo Progetto
Pioggia
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Apr. 1992 Oct. 1992 Nov. 1992 Dec. 1992 Feb. 1993 Mar. 1993
44 55 57 57 57 62

Apr. 1993 Jan. 1994 Feb. 1994 Mar. 1994 Apr. 1994 May 1994
58 65 62 42 59 58

Tab 2.1: Total number of reliable stations for the 12 months of seeding operations

(2004) and Orasi (2004).
The quality control analysis of the raingauge network has shown that the network did not always
performed well. Most of the problems were due to blockages of a large numbers of gauges. The
number of reliable stations ranges from a minimum of 42 to a maximum of 65 (see Table 2.1).

The radar reflectance values at a gauge site is assumed to be the value at the nearest radar
pixel center. Anomalies and occasional spikes were removed from reflectance values by a me-
dian smoothing procedure.

3 The core dataset

In the following Sections 4, 5, 6 and 7 attention is focused on rain data collected, every 10
minutes, on April 11, 1992 by the weather radar station located in the Airport of Bari Palese
and by 44 out of the 80 raingauges belonging to the CPP network, already considered as reliable
raingauges. Our choice is motivated by the fact that, the most complete set of data, regarding
both ground and radar measurements belongs to this day. Figure 1 shows the 43 raingauges
involved in the analysis and the six gauges reserved for validation are indicated in blue.
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Figure 1: Base map of raingauges

The rainfall event starts at 5:10a.m. and ends at 10:00a.m of the same day. The length
of the time series is T=30. A geographical selection of radar-rainfall data was performed in
order to remove data at the edge which are less accurate. Starting grid nodes were 15600 and
performing a geographical selection, the output grid counts 2754 nodes. Reflectance values are
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then available on a grid of N=2754 pixels, each 2 km square. In the sequel we use 38 out of the
43 reliable stations for modelling purposes and 6 raingauges for validation.

3.1 Some exploratory data analysis

In Figure 2 the mean rainfall at each of the 38 modelling sites is reported. This shows the dry
aspect of the considered region.

1100000 1150000 1200000

45
20

00
0

45
40

00
0

45
60

00
0

45
80

00
0

46
00

00
0

East−West

No
rth

−S
ou

th

0.5

0.44

0.360.2

0.29

0.5

1.02

0.76

0.4

0.22
0.19

0.47

0.42

0.74 0.72

0.84

0.38

0.11

0.06

0.29
0.21

0.21

0.74

0.6
0.4

0.02

0.14

0.32

0.26

0.31
0.23

0.12

0.06

0.09

0.36

0.31

0.1

0.2

Mean rainfall in 38 sites

Figure 2: Mean rainfall for 38 modelling sites (6 raingauges are used for validation purpose)

In Figure 3 we report the average rain at each modelling site corresponding to a log radar
value; it is easily seen that a linear relationship exists between the two measures on the log
scale.
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Figure 3: Mean of log rainfall vs logradar for the 38 modelling sites

The spatial variation of rainfall is investigated by using an empirical variogram of the data
computed following Sahu and Mardia (2005). We first obtain the residuals after fitting a regres-
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sion line using logradar at each site as covariate. We also remove any temporal variation and
trend present in the residuals by explicit modelling or by creating successive differences.
Let W (si, t) denote the residuals. We suppose thatW (si, t), t = 1, . . . , T are independent
replications at locationsi, i = 1, . . . , n since we have de-trended the data. We now consider the
average variogram defined by

γ(dij) =
1

2T

T∑
t=1

E[{W (si, t)−W (sj, t)}2]

wheredij is the distance between the spatial locationssi andsj. The quantityγ(dij) is estimated
by

γ̂(dij) =
1

2T

T∑
t=1

{w(si, t)− w(sj, t)}2.

The empirical variogram cloud is obtained by plottingγ̂(dij) againstdij for the n(n − 1)/2
possible pairs of locations.

In Figure 4 we provide the variogram cloud and we super-impose a smooth loess curve (as
obtained using the R functionloess ). The spatial structure is quite regular allowing us to
accept the use of classical geostatistical tools to estimate rainfall values.
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Figure 4: Empirical variogram for the 38 modelling sites

The temporal structure of spatial mean rainfall values is investigated (Figure 5) through the
autocorrelation function that decreases within one hour time window. In Figure 6 the same
plot is reported for radar rainfall estimates. It clearly shows that a calibration must be carried
on. The temporal structure is almost the same in terms of autocorrelation. However a direct
conversion of radar values based on standard techniques (see next paragraph) is unsatisfactory.
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Figure 5: Time series plot and autocorrelation function of spatial mean rainfall for 38 modelling
sites
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Figure 6: Time series and autocorrelation function of spatial mean radar rainfall estimates for
38 modelling sites

One station out of the 44 reliable raingauges had to be removed. This station (S415-
Pizziferro Argento) showed radar-based rainfall estimates reporting all zero values and had to
be considered as an outlier. Then rainfall values at this raingauge and the corresponding radar-
based rainfall estimation at the same location were discarded from the subsequent analysis. In
the next section we will investigate in detail the direct conversion of radar measurements into
rainfall and an operational technique for the radar calibration.
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4 An operational technique: the calibration factor

Data from a calibrating rain gauge with the corresponding radar observations provide thecali-
bration factor:

CF =
gauge− rainfall

radar − rainfall
=

Rg

Rr

(2)

This factor is used to adjust rainfall rates produced by the conversion equation (1); the
method is equivalent to choose a new value fora. Thebias, if n is the number of the calibration
gauges, is:

CFq =

∑n
i=1 (Rg)i∑n
i=1 (Rr)i

(3)

Equation (3) associates a weight proportional to its value to each observation. It is expected
that thecalibration factorcould vary spatially in a systematic way. Therefore, we aim to de-
scribe the spatial variability of the calibration factor and of thebias in order to perform spatial
adjustment choosing differentbias calibration factors or the averagedbias calibration factor
computed according to the distance from the radar. There is usually an increase in the calibra-
tion factor with distance from the radar. Actually, it is expected that the accuracy of the radar
measurements decrease with increasing distance from the radar site so that adjustment at any
point can be made by referring to the nearest calibration gauges rather than using an average
calibration factor over the whole area. The radar-based rainfall estimation was obtained using
the Z-R relation (1) witha = 200 andb = 1.6 (Marshall and Palmer (1948)).

Figure 7: Total precipitation measured by the reliable raingauges (dark bar) starting from 5:10
a.m. until 10:00 a.m. on April 11, 1992 compared to the total of the estimated radar-rain (light
bar) for the same period
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Figure 7, for instance, shows the sums of the rain collected by the reliable ground raingauges
each 10-minutes on the April 11, 1992 from 5:10 a.m. until 10:00 a.m. and of the radar-based
rainfall estimation for the same period. The maximum amount of rain is achieved in the interval
5:20 a.m.-6:00 a.m while the maximum amount of radar-based rainfall estimations is achieved
at 8:20 a.m. Starting from 8:20 a.m., the amount of rain decreases in both cases even if the
radar-based estimations are always larger than the observed rain.
A general comment for all analysed periods is that the complexity of the radar instrumentation
and measurement procedure, as well as the complexity and enormous variability of the rainfall
process, suggest discrepancies in radar-rainfall and raingauge rainfall products. The sources of
these discrepancies may be as simple as electronic miscalibration of the radar instrument, or a
non exact Z-R relationship.

In order to calculate thecalibration factor, the ratios between the rain collected by each
raingauge, cumulated during the considered period, and the radar-based rainfall estimations
cumulated for the same period, are computed and plotted against the distance of raingauges
from the site where the radar is installed. This procedure was applied to all events considered
reliable and findings show that, although ratios values should be near to one, generally, it is
not often the case regardless of the distance from the radar. Figure 4 reports, as an example,
calibration factorvalues of April 11, 1992 against distance from the radar.

0 20000 40000 60000 80000 100000 120000 140000

distance from the radar (mt)

0

1

2

3

4

5

rai
n/ 

rad
ar 

-ba
se

d r
ain

fal
l 

Figure 8: Ratio values against distance from the radar located at Bari Palese Airport, April 11,
1992

Furthermore, in general, results show that the distance of raingauges from the radar does
not influence ratio values. A singlebiascalibration factor is enough to cover the entire study
area. According to these results an adjustment of radar-based rainfall estimations was proposed
using the overall mean of the calibration factors, without introducing the variable ”distance”.
The requiredcalibration factorwas obtained for each event considered separately.
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Figure 9: Rain, radar estimates and radar calibrated, at each reliable raingauge, for the 11 April
1992

For instance, in Figure 9, at each raingauge, radar-based rainfall estimations corrected by
the singlebiascalibration factor, the raw radar measurements and the gauge rainfall cumulated
during the 11 April 1992 are plotted. Results show that there is a reduction in the errors in radar
estimates even though spatial errors still remain. This fact allows us to state that as the time
integration increases, some of the typical problems as zero-rainfall intermittence, small-scale
rainfall variability and raingauge measurement error become less pronounced.

As concluding remarks notice that there are several major drawbacks in this operational
calibration technique:

• thecalibration factorbecomes infinite when the radar readingRr = 0 and the raingauge
valueRg > 0 and viceversa for theassessment factor.

• the simple averaging does not allow for the variation in time of the two factors, that is the
estimator has no ”dynamic” memory.

• there is no natural way to compute thecalibration factorwhere raingauges are not avail-
able.

5 A space-time approach

To exploit the intense spatial coverage offered by the radar and the temporal density of the
raingauges data, following Brown et al. (2001), a time-series model is fitted at each site, using
a linear Gaussian state-space regression starting from the relationship between raingauges data
and radar reflectance values (Collinge and Young (1993)):

Rgt = aRb
rt ∗ et (4)

whereRgt is the gauge measurement at timet, Rrt is the radar measurement,et is a multiplica-
tive error term andt indicates the sampling time. An exploratory spatial analysis is conducted
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over the outputs of then single-site models.

5.1 Single-site modelling

In this part we consider each site separately when both raingauges’ data and radar-rainfall es-
timates are recorded at regular time-intervals during a rainfall event. The basic hypothesis is
that the relationship between the two measurements is assumed to be given by equation (4)
(Collinge and Young (1993)). In order to rely on a linear Gaussian state space model the log-
arithms are taken as follows. LetIt be a binary process assuming values1 if Rgt > 0 and0

otherwise. In this case the observed processR̃gt can be modelled as the product of two pro-
cesses̃Rgt = It × Rgt, then we log-transform only theRgt part of the process and we model it
according to the following scheme.

Parametersa andb in Eq.(4) are assumed to be varying over time and can be represented as
first order autoregressive models. Therefore theobservation equationand thestate equations,
conditionally onIt = 1, are:

yt = αt + Wtβt + εt for t = 1, ..., T. (5)

αt − µα = φα(αt−1 − µα) + ηt

βt − µβ = φβ(βt−1 − µβ) + εt

with yt = log(Rgt), Wt = log(Rrt) and the time-seriesεt, ηt, εt zero-mean, white-noise se-
quence with variancesσ2

ε , σ2
α, σ2

β respectively. Parametersφα andφβ are autoregressive param-
eters and are estimated together with the remaining unknown parameters, namely,σ2

ε , σ2
α, σ2

β,
µα andµβ, by maximum likelihood (MLE). The Kalman filter2 produces both the minimum
squared error estimates of the regression coefficientsαt andβt and the likelihood function for
the model (5).

5.2 Estimation of single-site models

Results obtained at site 210 are reported as an example. This site has recorded high rainfall
values compared to the other raingauges during the analyzed period, furthermore it does not
contain zero values. Figure 10 shows data on the log scale. In Tab. 5.2 values of the MLE
parameters estimation are reported.

2The output of Kalman filter was estimated by SsfPack package of Ox language
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Figure 10: Radar-rainfall estimates, raingauges’ data and 95% pointwise confidence bounds at
site 210

Parameters MLE
σ2

ε 0.123
σ2

α 0.0116
σ2

β 0.00348
µα -0.00206
µβ 0.00003
φα 1.0
φβ 0.99783

Tab 5.1: MLE estimates of parameters in model (5) at site 210

In Figure 11 the minimum mean square error predictors of the stateαt andβt provided by
the Kalman filter are drawn against time with their empirical pointwise 95% confidence bound.
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The most evident feature of the figure is thatα̂t decreases when̂βt is constant or increases.
This fact is common to all sites.
Furthermore we investigate the behavior of (α̂it,β̂it) for i = 1, ..., n and t = 1, ..., T which
are the minimum mean square error predictors of the dynamic regression coefficients, obtained
from the single-site models fitted to data from each of then sites. Computation of the sample
autocovariances of the arrayŝαit andβ̂it point out an exponential decay with increasing time-
lag, then the assumption of a first-order autoregressive model is consistent. As an example, the
partial autocorrelation functions of̂αt andβ̂t at site 210 are reported in Figure 12.
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Figure 12: Partial acf of̂αt andβ̂t at site 210
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5.3 The integrated model

Our aim is to combine the results from the previous section into an integrated model to describe
the relationship between radar-rainfall based estimates and raingauges’ measurements on the
2km × 2km pixel grid. Radar data are available at each of theN = 2754 pixels of the grid
while raingauges’ values are recorded at 43 sites. The model is defined on the set ofN pixels
and the measurementsyit at non-gauge sites are considered as missing. The unobserved values
of yit are predicted as:

ŷit = α̂it + β̂itWit. (6)

Therefore, the predictions of̂αit andβ̂it at non-gauge sites have to be constructed.
Recall that in this procedure the modelling sites aren = 38 (of which one had to be removed
because all radar measurements were zero) and 6 sites are set a part for validation. We choose
to consider the outputs of then single calibration sites (̂αit,β̂it) for i = 1, ..., n and to perform
the estimation over the whole area covered by the radar, conditionally on each temporal slice,
through an ordinary kriging (OK). This method allow us to obtain time-varying kriging surface
of bothα̂it andβ̂it for i = 1, ..., N .

5.4 Results and validation

The experimental variograms are calculated using a lag of 14 km along the directions E-W,
N-S, NE-SW and NW-SE, with an angle tolerance of22.5◦ so as to give complete coverage of
the field. At each time, the directional variograms are isotropic and can be grouped into a sin-
gle omnidirectional variogram. Generally, at each time intervalt, the choice of the variogram
model requires to fix a set of theoretical functions: a nugget effect, a spherical, an exponential
or a gaussian model with different sill and ranges.
A spherical model with varying sill plus a nugget term revealed suitable for all time slices. Af-
ter some preliminary testing a large neighborhood has been chosen so to ensure that as many
samples as possible would be involved in the estimation procedure. In Figure 13 and 14 kriging
results at 5:30 am are report. Notice that the number of modelling sites varies with time as it is
not always raining everywhere in the area.
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Figure 13: Kriging prediction surface (a) and standard deviation (b) at 5:30 am of state param-
eterα

15



X

Y

50000 100000 150000 200000

10
00

00
12

00
00

14
00

00
16

00
00

18
00

00

-1-0.5

-0.5

 0

 0

 0
 0

0.5

0.5
1

-1.5 0.5

(a)

X

Y

50000 100000 150000 200000

10
00

00
12

00
00

14
00

00
16

00
00

18
00

00

0.1

0.2

0.2

0.2

0.2
0.2

0.2 0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3
0.3 0.3

0.3
0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4
0.4

0.4

0.4

0.4

0.4

0.4
0.4

0.4

0.4
0.4

0.4

0.4

0.4
0.4

0.4

0.4

0.5
0.5

0.5

0.0 0.4

(b)

Figure 14: Kriging prediction surface (a) and standard deviation (b)at 5:30 am of state parameter
β

The kriging estimates of̂αit andβ̂it, were used to obtain the prediction valuesŷit as shown
in (6).

Figure 15 shows time series plot of the true rainfall, the estimated raingauge measurements
and an empirical confidence interval obtained adding and subtracting two times the standard
error. It is important to stress that in order to obtain the estimated rain on the original scale we
used the following equation:

R̂gt = exp{(β̂it + σ2
β/2) ∗Wit + (α̂it + σ2

α/2)} (7)
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Figure 15: Validation raingauges for the state-space model: True raingauge-rainfall (continous
line), estimated rainfall (dashed line) and 2σ empirical confidence interval (dotted)
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Predictions follow the pattern of the true rainfall in a better way for sites S107, S304 and
S211. The calibrations are worse at other sites, and a general overestimation of the rainfall
amount is evident. Furthermore empirical confidence bounds are quite large, often including
the zero rain value. Another drawback of this approach is that because of the log transformation
of the data only strictly positive radar values are involved in the estimation procedure, then only
part of the available information can be used. The empirical mean square error are calculated
at each of the six validation sites, and reported in Tab. 7.1. The MSE values are lower at sites
S107, S211, S304 and S512.

In order to verify the adequacy of the entertained model, we report a histogram and a Normal
Q-Q plot of the standardized residuals calculated at the six validation sites in Figure 16.
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Figure 16: Histogram and Q-Q normal plot of standardized residuals of the six validation sites

From Figure 16(a) we can see that the residuals distribution is quite symmetric with few
outliers in the right tail, this behavior is reflected in the normal QQ-plot (Figure16(b)). A plot
of residuals versus fitted values, reported in Figure 17, reveals a strong relationship between the
fitted values and the residuals most likely due to the discrete nature of radar measurements and
the presence of some outliers.
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Figure 17: Plot of residuals versus predicted values

This fact suggests that the model to describe the relationship between raingauge rainfall and
radar-based rainfall estimation has to be improved. An alternative approach is proposed in the
next section.

6 Kriging with External drift

Standard universal kriging assumes that the spatial field under study is the sum of a stationary
random function and a polynomial drift:

Z(x) = Y (x) +
∑

l

alfl(x)

in whichal are deterministic unknown coefficients andfl are monomials. Under this model, the
expectation at locationx is given by the following expression:

E[Z(x)] =
∑

l

alfl(x).

The predictorZ∗(x), based on dataz(x1), ..., z(xn), is obtained by minimizing the error vari-
anceV ar(Z(x)−Z(x)∗) under the constraint of unbiasednessE[Z(x)−Z(x)∗] = 0 whatever
the unknown drift coefficientsal. This is ensured if the universality conditions

∑
i λifl(xi) =

fl(x) are satisfied by the linear predictorZ(x)∗ =
∑

λiZ(xi) with weightsλi.The drift function
is usually assumed general and flexible while keeping parameters number small, however better
choices are possible if the spatial patterns can be predicted to some extent before the data are
available. In some situation it may be of interest to use arbitrary drift functions which results in
a particular formulation of universal kriging.

Under an Irf-k model (intrinsic random function of order k),the underlying model is some-
what different and

Z(x) = Zk(x) + mk(x) (8)

consisting of a deterministic partmk(x), representing the drift as a k-th order polynomial, and
a random partZk(x) with an associated generalized covarianceK(h), whereh is the distance
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between two locations. The polynomial of orderk is a linear combination of functionsfl(x) of
the coordinates with coefficientsal

mk(x) =
L∑

l=0

alfl(x) (9)

When there are two type of data sets, one containing few samples of good quality but which
do not cover regularly the entire field of interest (the random functionZ(x)), and one containing
a large amount of samples covering the whole domain but with poor accuracy (a regionalized
variables(x) considered as deterministic), a well-known method consists in merging the two
sources of information usings(x) as an external drift function for the estimation ofZ(x). The
external drift method consists in integrating into kriging systems supplementary universality
conditions about the external drift variables(x). The functions(x) is known at all locationsxi

of the sample as well as at the nodes of the estimation grid. The condition

n∑
i=1

λis(xi) = s(x)

is added to the universal kriging system independently on the class of covarianceK(h). Actu-
ally, a class of generalized covariances can only be defined with respect to translation-invariant
basis functionfl(x). A kriging system based on translation-invariant and external drift can be
written as:





∑n
b=1 λbK(xi − xb)−

∑L
l=0 µlfl(xi)− µss(xi) = K(xi − x) for i = 1, .., n∑n

b=1 λbfl(xb) = fl(x) for l = 0, .., L∑n
b=1 λbs(xb) = s(x)

(10)

The principle behind this technique is to replace the large scale drift function, usually mod-
eled as a low order polynomial, by a combination of few deterministic functionsfl(x) known
over the whole field.

Kriging with the external drift method was successfully applied in climatic studies to map
temperature in Scotland (Hudson and Wackernagel (1994))and for the reconstruction of rainfall
fields (Raspa et al. (1997)) moreover it has found application in many fields such as petroleum
and gas exploration and hydrogeology.

6.1 Rainfall field reconstruction by kriging with external drift

In this section we apply the kriging with external drift method to the our core dataset. In our
study we consider raingauges’ dataRg as theZ(x) random function and the radar dataRr,
converted to rainfall rate using the Marshall-Palmer relationship, as the external drift function.
At this stage, no correlation coefficient between the two variables can be derived, as they are not
defined at the same locations. The radar-rainfall background is interpolated at raingauges’ sites
from the target nodes using a quick bilinear interpolator. A unique neighborhood was chosen
because of the small number of samples, no nugget effect was added to perform the estimation.
The kriging procedure is applied to each observation timet. The assessment of the predictive
performance is tested comparing the predicted rainfall intensity and the true raingauge values at
each of the six validation sites and empirical mean square error are computed. The polynomial
basic structures (Chiles and Delfiner (1999))for the determination of the optimal generalized
covariance used in the estimation procedure are:
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• a linear generalized covariance termK(h) = −b0|h|+ b1|h|3;
• a spline generalized covarianceK(h) = bs|h|2log|h|.

where |h| =
√

h2
1 + h2

2 + ... + h2
n andhi are the distances between sites. For instance, the

resulting optimal model used for the estimation, on the first temporal slice (April 11, 1992
at 5:20 a.m), is given by a linear term and a spline term with coefficients 0.166 and 0.012
respectively. Estimation results are visualized in Figure 18. Figure 18(b) shows the map of the
estimated standard deviations. Rain estimates at grid nodes keep values ranging from 0 mm to
1.64 mm.
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Figure 18: April 11, 1992 at 5:20 a.m.(a):Estimated rainfall as background and raingauges’
location; (b): Standard deviation of estimation and raingauges’ location.

The map of estimated values shows higher values of estimated rain where raingauges recorded
higher rainfall values and decreasing values elsewhere. Standard deviation values are smaller
near the raingauges and increase with distance. Maps obtained every 10 minutes show an in-
crease of rainfall rate along the SE direction until 9:00 a.m.; after this time the rainfall rate
constantly decreases towards zero. Again, maps of standard deviation, record smaller values
near raingauges and higher values far from gauges. In conclusion, is important also to stress the
usual drawbacks of this method:

• the final map resembles the drift map as soon as the two variables are highly correlated
and tends to ignore the drift map in the opposite case;

• the drift information is used as a deterministic function, and then the estimation error does
not take into account the variability of the drift and the uncertainty in the drift measure-
ments;

6.2 Validation

The validation procedure is performed always on the same six raingauges, shown in Figure 1.
Figure 19 shows time series plot of the true rainfall, the estimated raingauge measurements and
approximate 95% confidence intervals obtained as estimated values plus and minus two times
the standard errors. Better estimates are obtained at sites S304 and S606 and their standard
errors are generally smaller. In general, the estimated rainfall follows the behavior of the true
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rainfall. Furthermore, the true raingauge measurements are within the 95% intervals, as would
be expected. However, all six validation gauges are located close to the calibration gauges
and we cannot verify if the calibrations are still accurate when the distance from calibration
sites increase. Moreover, the standard deviations increase with the distance from the raingauge
network. The empirical mean square errors were calculated at each of the six validation sites,
and results are shown in Tab.7.1. The MSE values confirm that, at each validation site, the
estimates obtained through the KDE method are very similar to the true rainfall.

600 700 800 900 1000

0.
5

1.
5

S107

time

ra
in

(m
m

)

600 700 800 900 1000

0.
0

0.
8

S304

time

ra
in

(m
m

)

600 700 800 900 1000

0.
0

0.
6

1.
2

S606

time

ra
in

(m
m

)

600 700 800 900 1000

−0
.2

0.
4

S512

time

ra
in

(m
m

)

600 700 800 900 1000

0.
0

0.
6

S211

time

ra
in

(m
m

)

600 700 800 900 1000

0.
0

1.
0

S217

time

ra
in

(m
m

)

Figure 19: Validation raingauges for the KDE: True raingauge-rainfall (continous line), esti-
mated rainfall (dashed line) and 2σ empirical confidence interval (dotted)

In order to verify the adequacy of the entertained model, we report a histogram and a Normal
Q-Q plot of the standardized residuals calculated at the six validation sites (Figure 20).
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Figure 20: Histogram and Q-Q norm plot of standardized residuals of the six validation sites

The histogram in Figure 20(a) reveals a departure of residuals distribution from the normal
distribution which is reflected in the normal QQ-plot (20(b)). The latter shows a curved depar-
ture from linearity toward the middle part of the plot. A plot of residuals versus fitted values,
reported in Figure 21, reveals again the relationship between the fitted values and the residuals
but now this relation is less strong respect to those one obtained by the state-space model.
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Figure 21: Plot of residuals versus predicted values

7 Comparing results

Results obtained, in terms of MSE, with the proposed approaches are quite different. From
Table 7.1 it can be noticed that modelling the rainfall by the Kriging with an external drift
returned reductions in the average mean square errors; in three sites they are lower than those
obtained through the space-time approach for each validation site. The reason why this happens
is proposed below.
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A fundamental innovation in this work, with respect to the study previously conducted on
the Italian rain enhancement project, was the introduction of calibrated radar data that until now
were used only for visual inspection. However, the quality of radar data is extremely poor.
The radar-based rainfall estimations are affected by errors that influence the relationship with
the true rainfall. This fact strongly affect the model’s assumptions for the state space approach
while it is less relevant in KDE procedure. The latter because in this case radar data play the
role of background map affecting in a smaller measure the estimation procedure.

As a further term of comparison, in Table 7.1 the empirical mean square errors for the
proposed approaches and for the Ordinary Kriging (OK) of rainfall alone as measured by the
raingauges network are compared. This last technique has been applied using a global neigh-
borhood, a spherical variogram with sill and nugget changing with time and with common range
(21000 m). In terms of MSE the KDE method performs better then the other two, moreover
by looking at the plots with confidence intervals (Figure 22) we can see that OK estimates are
the least reliable. Indeed most of the observed values lies outside the 2σ2 confidence interval
telling us how little reliable these estimates are. On the other hand the KDE method shows a
considerably better result in terms of empirical confidence interval (Figure 19).

Validation sites KDE State space OK
S107 0.0597 0.0516 0.0237
S211 0.0629 0.0584 0.089
S217 0.1940 0.0842 0.176
S304 0.0044 0.0458 0.0107
S512 0.0195 0.0820 0.0344
S606 0.0273 0.326 0.0459
Overall Mse 0.0613 0.108 0.0633

Tab 7.1: Comparing MSE of the space-time approach, the KDE method and the Ordinary Krig-
ing of rain
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Figure 22: Validation raingauges for the O.K.: True raingauge-rainfall (continuous line), esti-
mated rainfall (dashed line) and 2σ empirical confidence interval (dotted)

8 Conclusion

The introduction of a C-band digital weather radar, scanning the whole area every five minutes,
allowed us to introduce a new element of investigation in the project evaluation task permitting
the reconstruction of the rainfall field over an area larger than the one covered by the raingauge
network. However, rainfall and radar measurements are notably different: on one hand the first
ones give a direct measure, spatially punctual and time integrated, of ground rainfall; on the
other hand, the second ones give an indirect measure of precipitation, on the air, and integrated
in space and at a given point in time. The well-known Z-R relationship suggests the type of
link existing between the two measurements, however it is not an exact equation and its use
may not be always correct when the aim is to build a model able to provide estimates of rain-
fall intensity over a region larger than the one covered by the ground raingauge network. The
Marshal-Palmer relationship provided a first approximation to the rainfall rates throughout the
radar field and several types of calibration of the estimated values were tested and compared.
The first one proposed, using the calibration factor, i.e. the ratio between rainfall as mea-
sured at ground level and rainfall measured by radar, led to a general reduction in the errors in
radar-derived rainfall estimates, however large spatial errors still remain. The second proposed
strategy reflects the fact that the ground data are spatially sparse, but temporally dense. The
model implies the fitting of a linear state-space time series model at each site. In the multi-site
model, Kriging surface of the state variables, associated with then sites at which ground mea-
surements are available, were obtained through Ordinary Kriging for each time-interval. This,
in turn, led to prediction of ground rainfall intensity at arbitrary locations, for which only radar
data exist. In the fitting procedure we left out six sites reserved for validation purposes. Anal-
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ysis showed relatively small MSE values for these six sites and approximate predictions and a
further method was proposed and compared.

The use of the Kriging with external drift allowed us to obtain at each time-interval, maps
of rainfall data using the radar data as an external drift to add to the kriging equations. The
integration of radar maps improved the estimating accuracy, as showed by the smaller MSE
values at the six validation sites and also has the advantage of being computationally efficient.
However, kriging type estimates are highly reliable only inside the domain in which ground
measurements are taken. As we are interested in evaluating extra-area effects we need a further
strategy to improve our estimates. Moreover, we still need to build an integrated space-time
model which is consistent with the data and which captures the essential features of the ob-
served pattern of spatial and temporal joined dependence. A new study is currently applying
the model proposed by Sahu and Mardia (2005) that implies the use of drift functions in space
and of correlations (first order Markov structure) in time in a full Bayesian framework.
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