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1 Introduction

Partially observed data sets are ubiquitous in applied statistics. Usually missing
data are filled in, and only the final imputed data set is disseminated. Imputation
is justified by practical problems, and at the same time its use is controversial.

The practical problem that imputations overcome are different. For instance,
if a partially observed data set is analyzed by different departments in the same
institute (as usual for economic samples of the national statistical institutes), dif-
ferent treatment of missing values may be the cause of inconsistencies between the
disseminated results. Another problem concerns the dissemination of sample data
to third parties (research institutes, universities, international organizations) which
are unaware of the data production process, that is a useful source of informa-
tion when missingness occurs. References on the importance of imputing partially
observed data set are Titterington et al. (1989) and Haziza (2001).

The controversial issues of imputation mainly concern the statistical charac-
teristics of the imputed data set. An imputed data set is not a real data set,
and statistical conclusions drawn from an imputed data set are questionable. Let
D = {xi; i = 1, . . . , n} be a sample of n i.i.d. k-variate records from a distribution
f(x|θ), θ ∈ Θ. Let xi;obs and xi;mis be the observed and missing part in the ith
record respectively, for every i = 1, . . . , n. Imputation of missing items consists in
choosing a substitute x̃i;mis for the missing components of D. The final imputed
data set is a complete data set D̃ on which the usual estimators and tests are ap-
plied. The ideal situation is given by an imputed data set D̃ whose imputations
are randomly generated by the (unknown) conditional distribution f(xmis|xi;obs;θ)
for every i, while the actual imputation generating distribution g(xmis|xi;obs) may
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be different. The appropriateness (or better, the reliability) of D̃ depends on two
distinct aspects: (i) the missing data generating mechanism and (ii) the imputation
mechanism. These two aspects interact: discrepancies between f and g for each
missing data pattern affect the reliability of the imputed data set, and are especially
important for highly probable missing data patterns.

Missing data patterns and their probabilistic relationships with observed data
are well described in the statistical literature, since the seminal paper by Rubin
(1976). On the contrary, the study of the discrepancies between the data and
imputation processes have received just little attention. A remarkable exception is
the statistical matching problem, Paass (1985), where such a discrepancy is named
matching noise. Statistical matching consists in integrating information coming
from two samples A and B of size nA and nB respectively, with no common units,
a set of commonly observed variables X, and distinctly observed variables Y in A
and Z in B. Matching of A and B is performed by imputing in A an observed
Z in B by means of the commonly observed variables X. To this purpose, the
usual imputation techniques can be applied under the assumption of conditional
independence of Y and Z given X, usually denoted as the conditional independence
assumption, CIA for short (for other dependence relationships, see D’Orazio et al.
(2006) and references therein).

It can be easily proved that, when A and B are i.i.d. samples from the same
distribution and nA and nB are fixed by survey design, the missing data generation
process is missing completely at random, D’Orazio et al. (2006). As a matter of fact,
the evaluation of the reliability of the matched file consists only of the matching
noise.

The goal of this paper is to discuss the matching noise produced by a class of
nonparametric imputation procedures in the simplified context of statistical match-
ing. This class is based on the kNN nonparametric estimation of the regression
function of Z on X in B, and includes some of the most popular nonparametric
imputation procedures (as distance hot deck). The asymptotic properties of the
imputation procedures are formally analyzed, and then studied by simulation.

The paper is organized as follows. In Section 2 the statistical framework for
the matching problem is described. In the same section a set of nonparametric
imputation procedures based on the kNN method with fixed number k of donors,
are discussed, showing when they produce matching noise. All of them are non-
parametric techniques, i.e their are not based on a parametric model for the data.
In Section 3 the matching noise of different procedures is formally evaluated. In
particular, in Section 3.1 the matching noise for kNN procedure is computed. The
results of Section 3.1 are particularized for the most popular nonparametric impu-
tation procedure, distance hot deck (Section 3.2). In Section 4, a nonparametric
imputation procedure with a variable number of donors k (henceforth d0-Kernel)
is described and the corresponding matching noise is formally evaluated. Finally
in Section 5 the matching noise of different procedures and its effect on some esti-
mators is shown via simulation.

2 Statistical framework for matching noise

Let (X, Z) = ((X1, . . . , XP ), (Z1, . . . , ZR)) be a (P + R)-variate r.v. and denote
by f(x, z) its joint density function (d.f., for short). Let further A and B be two
independent samples of size nA, nB , respectively, generated by (X,Z). Finally,
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assume that only X is observed in A, and (X, Z) is observed in B. Hence, Z is
missing in A. The sample data can be then written as(

xA
a

)
=

(
xA

a1, . . . , xA
aP

)
, a = 1, . . . , nA(

xB
b , zB

b

)
=

(
xB

b1, . . . , xB
bP , zB

b1, . . . , zB
bR

)
, b = 1, . . . , nB

for samples A, B, respectively.
The construction of a complete synthetic data set containing (X,Z), with no

parametric assumptions on the family of distributions for the variables of interest, is
usually faced by means of nonparametric imputation procedures. These procedures
are based on filling missing values with observed ones. More formally, these methods
consist in completing the records of a file (the recipient file A, say) by means of
the records of the other file (the donor file B, say). The final product is a unique,
synthetic data file where all the variables of interest are simultaneously recorded.

The synthetic data set can be used in “genuine” inference procedures only when
it can be (at least approximately) considered as a sample generated from the joint
distribution of (X,Z). As a consequence, the discrepancy between the joint proba-
bility distribution of the variables of interest (a) in the population, and (b) in the
imputed file (i.e. the matching noise) is of primary interest. Attempts at evaluating
such discrepancy have been performed in the literature on statistical matching, see
D’Orazio et al. (2006) and references therein. In Rässler (2002) normative sugges-
tions for evaluating the accuracy of a statistical matching procedure are provided.

In subsequent sections, we study the matching noise produced by a number
of different nonparametric imputation techniques. The final output of these proce-
dures is a new data set Ã with records (xA

a , z̃a), a = 1, . . . , nA, where z̃a is a z-value
observed in B associated by the imputation technique to record a in A.

Formally, a family of nonparametric imputation techniques can be described
as follows. For every xA

a in A, let b(a) = (b1(a), . . . , bk(a)) be the labels of its
k donor records in B, on the basis of the nB observations xB

b , b = 1, . . . , nB ,
and let XB

b(a) be the corresponding vector of r.v.’s (XB
b1(a), . . . , XB

bk(a)). Next, the
corresponding z-values ZB

b(a) = (ZB
b1(a), . . . , ZB

bk(a)) are considered. Finally, the

missing value ZA
a is imputed by Z̃a = g(ZB

b(a)), g(·) being an appropriate function.
Common examples are the arithmetic mean of ZB

bj(a), j = 1, . . . , k, their median,
or a randomly chosen value from ZB

bj(a), j = 1, . . . , k.
Since the observed x-values in A are generated from X, the records (xA

a , z̃a) in
Ã are generated from a r.v. (X, Z̃), say. The donor procedure works appropriately
if the distribution of (X, Z̃) coincides with (is “not too far from”) the distribution
of (X,Z). The usual factorization rules for d.f.s lead, with obvious notation, to

fXA
a XB

b(a)Z̃a
(x, t, z) = fX(x) fXB

b(a)|XA
a
(t|x) fZ̃|XB

b(a)X
A
a
(z|x, t).

Once it is known that XB
b(a) = t, Z̃a and XA

a are independent, hence the following
relationship

fXA
a XB

b(a)Z̃a
(x, t, z) = fX(x) fXB

b(a)|XA
a
(t|x) fZ̃|X(z|t)

holds. As a consequence, the synthetic sample data (xA
a , z̃a), a = 1, . . . , nA, can be

considered as composed by observations (identically distributed but not generally
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independent) generated from:

fXA
a Z̃a

(x, z) =
∫

fXA
a XB

b(a)Z̃a
(x, t, z) dt

= fX(x)
∫

fXB
b(a)|XA

a
(t|x) fZ̃|X(z|t) dt. (1)

The matching noise is determined by two elements: (i) the presence of the donor
distribution fXB

b(a)|XA
a
(t|x); (ii) the combination of the donor values Z̃ = g(Z̃B

b(a)).
It is easy to see that, if k = 1 and g(.) is the identity function, the matching noise
is null if the r.v.s XA

a , XB
b1(a) coincide almost surely, so that the r.v.’s (XA

a , Z̃a)
and (X,Z) possess the same d.f.. This is possible when X is categorical and all the
categories are observed in both A and B. In all other cases, the two distributions
are different.

In the next sections, we will illustrate the influence of the matching noise for
different, widely used donor selection procedures. This problem has been addressed
by many authors (see Sims (1972), Rodgers (1984), Paass (1986), Rässler (2002) p.
21-22) but an explicit probabilistic evaluation of the matching noise is still missing.

In what follows, the r.v.s X and Z will be assumed absolutely continuous.

3 Matching noise for kNN nonparametric imputa-
tion techniques

In this section we explicitly evaluate the matching noise for a class of nonparametric
imputation procedures that includes some of the most used ones: the distance and
random hot deck imputation procedures. This class is defined by assuming that
the k donors to a record a ∈ A are given by the k nearest neighbours of xa in B,
a = 1, . . . , nA. Formally, let D be a positive definite matrix, and let d(xA

a ,xB
b ) =

((xB
b −xA

a )′D(xB
b −xA

a ))1/2 be the corresponding Euclidean distance. The k nearest
neighbours of xA

a are the k > 1 observations xB
b(a) = (xB

b1(a), . . . , xB
bk(a)) in B which

are closest to xA
a , according to the distance d. The imputed value Z̃A

a is then a
function g(ZB

b1(a), . . . , ZB
bk(a)).

In the sequel we will denote by Ψb the quantities XB
b −xA

a , by Wb the quantity
Ψ′

bDΨb, by ΨnB :1 6 · · · 6 ΨnB :nB
the ordered Ψbs, and by fΨ the conditional d.f.

of Ψb given XA
a = xA

a .

3.1 Formal evaluation of the matching noise

In order to evaluate the matching noise for the kNN nonparametric imputation pro-
cedures, let Γ = (Γ1, . . . , Γk) be the r.v. taking the value b(a) = (b1(a), . . . , bk(a))
for every observed sample, i.e. the k nearest neighbour labels of each record in the
sample. Consider next the joint probability

P (Γ = b(a),ΨnB :j 6 ψj , j 6 k) =
1

DnB ,k
P (ΨnB :j 6 ψj , j 6 k|Γ = b(a)) (2)

where DnB ,k = nB (nB−1) · · · (nB−k+1) and let Sk = {(ψ1,ψ2, ..,ψk) : ψ
′

1Dψ1 6
ψ

′

2Dψ2 6 ... 6 ψ
′

kDψk} be a k-dimensional subset of RP , and (−∞,ψj ] = {a ∈
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RP : a 6 ψj} the orthant with (upper) vertex ψj , j = 1, 2, .., k. Since

P (ΨnB :j 6 ψj , j 6 k|Γ = b(a))
= P (Ψbj(a) 6 ψj , j 6 k, Wt > Wbk(a), t /∈ b(a)|Γ = b(a))

=
∫

Sk

P
(
Ψbj(a) 6 ψj , j 6 k, Wt > Wbk(a), t /∈ b(a)|Γ = b(a),

Ψbj(a) = xj , j 6 k
) k∏

j=1

fΨ(xj)dxj

=
∫

Sk∩(
⋂k

j=1(−∞,ψj ])

P (Wt > x
′

kDxk ∀t /∈ b(a))
k∏

j=1

fΨ(xj) dxj

=
∫

Sk∩(
⋂k

j=1(−∞,ψj ])

∏
t/∈b(a)

P (Wt > x
′

kDxk)
k∏

j=1

fΨ(xj)dxj

=
∫

Sk∩(
⋂k

j=1(−∞,ψj ])

P (W > x
′

kDxk)nB−k
k∏

j=1

fΨ(xj)dxj

it is seen that (2) is equal to

1
DnB ,k

∫
Sk∩(

⋂k
j=1(−∞,ψj ])

P (W > x
′

kDxk)nB−k
k∏

j=1

fΨ(xj)dxj . (3)

Hence, the marginal d.f. of (ΨnB :1,ΨnB :2, ...,ΨnB :k) is given by

fΨnB :1 ΨnB :2 ... ΨnB :k(ψ1,ψ2, ...,ψk) = P (W > ψ
′

kDψk)nB−k
k∏

j=1

fΨ(ψj). (4)

Finally, taking into account that XB
b(a) = (XB

b1(a), . . . , XB
bk(a)) coincides with (ΨnB :1+

xA
a , . . . , ΨnB :k + xA

a ), we have proved the following result.

Proposition 1 The conditional d.f. of XB
b(a), given XA

a = xA
a , is equal to

fXB
b(a)|XA

a
(x1, . . . , xk) = fΨnB :1 ... ΨnB :k(x1 − xA

a ,x2 − xA
a , ...,xk − xA

a ), (5)

where fΨnB :1 ... ΨnB :k is given by (4).

The behaviour of the k donors as nB increases is studied in Proposition 2.

Proposition 2 Let ε be a P -dimensional vector with all components equal to ε.
Using the same notation as in Proposition 1 , and writing XB

b(a) ∈ (xA
a − ε, xA

a + ε)
if and only if XB

bj(a) ∈ (xA
a − ε, xA

a + ε) for every j = 1, . . . , k, we have:

lim
nB→∞

P (XB
b(a) /∈ (xA

a − ε, xA
a + ε) |XA

a = xA
a ) = 0 ∀ ε > 0.

Proposition 2 implies that all k components of XB
b(a) are “close” to X = xA

a .
Hence, the conditional d.f. of each ZB

bj(a), given XB
b(a), is close to the conditional

d.f. of Z, given X = xA
a , j = 1, . . . , k. This does not imply that the conditional

d.f. of g(ZB
b1(a), . . . , ZB

bk(a)), given XB
b(a) is close to the d.f. of Z given X.
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Example 1 If g is the mean of ZB
bj(a)s, g(ZB

b1(a), . . . , ZB
bk(a)) tends to the distri-

bution of the sample mean of k i.i.d. copies of Z, given X.

Example 2 If g is a random draw from the k nearest neighbours ZB
bj(a), j =

1, . . . , k, g(ZB
b1(a), . . . , ZB

bk(a)) tends to the distribution of Z, given X, i.e. the
matching noise is null.

Example 3 An alternative imputation procedure, again based on kNN, could be the
following. Assume a (multivariate) nonparametric regression model Z = h(X)+U,
with E(U|X) = 0, E(UU′|X) = σ2I, I being the identity matrix. A simple idea
consists in (i) estimating first h(X) by a nonparametric estimator ĥ; (ii) defining
the residuals eB

b = zB
b − ĥ(xB

b ), b = 1, . . . , nB; (iii) drawing at random a residual
eB

b∗ ; (iv) imputing z̃A
a = ĥ(xA

a ) + eB
b∗ . If ĥ(·) is a consistent estimator of h(·)

than it is not difficult to see that the matching noise of this procedure vanishes as
nB increases. In this way we have defined a (nonparametric) class of consistent
imputation methods. In section 5, the performance of this imputation technique is
compared to the hot deck one in the special case of ĥ = kNN estimator of h.

3.2 An important special case: distance hot-deck

Distance hot-deck is probably the most widely used imputation technique for match-
ing. Each record in the recipient file A is matched with the closest record in the
donor file B. Formally speaking, it consists in selecting, for each a = 1, . . . , nA, the
donor b1(a) ∈ B such that

d(xA
a ,xB

b1(a)) = min
b∈B

d(xA
a ,xB

b )

It can be shown (Paass (1985), Cohen (1991) ) that distance hot-deck is equiv-
alent to impute missing data through the conditional expectation of Z given X
estimated by the (nonparametric) kNN nearest neighbour method, with k = 1.
This is actually the most important theoretical justification of distance hot-deck.

Its main properties can be obtained by specializing the results in Section 3.1.
More precisely, using the same notation as in Section 3.1, it is immediate to prove
the following proposition, that allows the evaluation of the matching noise for dis-
tance hot-deck.

Proposition 3 The conditional d.f. of XB
b1(a), given XA

a = xA
a , is equal to

fXB
b1(a)|xA

a
(x) = fΨnB :1(x− xA

a ),

Distance hot-deck exhibits an important feature: its matching noise decreases as
nB increases. In fact, by particularizing Proposition 2, it is immediate to prove the
following statement.

Proposition 4 Using the same notation as in Proposition 2, we have:

lim
nB→∞

P (XB
b1(a) /∈ (xA

a − ε, xA
a + ε) |XA

a = xA
a ) = 0 ∀ ε > 0.
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Despite its similarity with Proposition 2, there is a fundamental difference. In
fact, Proposition 4 tells us that, if nB is large enough, then the matching noise is
negligible because XB

b1(a) is “close” to X = xA
a with high probability, and hence

the conditional distribution of Z̃, given XB
b1(a), is close to the conditional d.f. of

Z, given X = xA
a . As discussed in Section 3.1, kNN method with k > 1 does not

generally possess the same property.

4 d0-Kernel hot-deck

In this section we describe a nonparametric imputation procedure characterized by
a variable number of donors k, the d0-Kernel. For each record in A, the available
donor methods described in Section 3 select the k nearest neighbours with fixed
k. As a consequence, some donors could be sparse, especially in the tails of the
distribution of X. In other words, the kNN method forces units far from the
record xA

a to be equally informative on zA
a . Since the optimal value of k varies

with xA
a , an obvious extension of the kNN method consists in allowing a possibly

different number of donors k for each record xA
a . In order to accomplish this, we

fix a threshold d0: the records b in B having distance d(xB
b , xA

a ) smaller than
d0 are considered as neighbours of xA

a , a = 1, . . . , nA. As a matter of fact, the
number k̃ of neighbours of a has binomial distribution with parameters nB and
α(d0) = P (W 6 d0). Let Γk̃ be the r.v. taking the value b(a) of records xB

b such
that d(xB

b , xA
a ) 6 d0. Then, when k > 1 we have

P (k̃ = k,Γk̃ = b(a),ΨnB :j 6 ψj , j 6 k̃)

= P (k̃ = k)
1

DnB ,k
P (ΨnB :j 6 ψj , j 6 k̃|k̃ = k,Γk̃ = b(a))

= P (k̃ = k)
1

DnB ,k
P (Ψbj(a) 6 ψj , j 6 k, Wt > Wbk(a), t /∈ b(a)|

Wbj(a) 6 d0, j 6 k,Wt > d0, t /∈ b(a))

= P (k̃ = k)
1

DnB ,k
P (Ψbj(a) 6 ψj , j 6 k|Wbj(a) 6 d0, j 6 k)

=
P (k̃ = k)

DnB ,kP (W 6 d0)k

∫
Tk∩(

⋂k
j=1(−∞,ψj ])

k∏
j=1

fΨ(xj)dxj (6)

where Tk = {(ψ1,ψ2, ..,ψk) : ψ
′

1Dψ1 6 ψ
′

2Dψ2 6 ... 6 ψ
′

kDψk 6 d0}. Taking
into account that there are no donors when k̃ = 0, from (6) it is not difficult to
compute the following probability

P (ΨnB :j 6 ψj , j 6 k̃|k̃ > 1) =
∑
k>1

P (ΨnB :j 6 ψj , j 6 k̃, k̃ = k|k̃ > 1)

=
1

P (k̃ > 1)

∑
k>1

P (ΨnB :j 6 ψj , j 6 k̃, k̃ = k) (7)

where

P (ΨnB :j 6 ψj , j 6 k̃, k̃ = k) =
P (k̃ = k)

P (W 6 d0)k

∫
Tk∩(

⋂k
j=1(−∞,ψj ])

k∏
j=1

fΨ(xj)dxj (8)

7



From (7) it is possible to derive the distribution function of the donors XB
b(a), and

hence the matching noise. The marginal d.f. of (ΨnB :1,ΨnB :2, ...,ΨnB :k̃ | k̃ > 1) is
given by

fΨnB :j ,j6k̃(ψj , j 6 k̃ | k̃ > 1) =
1

P (k̃ > 1)

∑
k>1

P (k̃ = k)
P (W 6 d0)k

k∏
j=1

fΨ(ψj). (9)

Finally, taking into account that XB
b(a) = (XB

b1(a), . . . , XB
b

k̃
(a)) coincides with (ΨnB :1+

xA
a , . . . , ΨnB :k̃ + xA

a ), we have proved the following result.

Proposition 5 The conditional d.f. of XB
b(a), given XA

a = xA
a , is equal to

fXB
b(a)|XA

a
(xj , j 6 k̃ | k̃ > 1) = fΨnB :j ,j6k̃(xj − xA

a , j 6 k̃ | k̃ > 1), (10)

where fΨnB :j ,j6k̃ is given by (9).

Differently from the kNN method the results in Proposition 2 can not be ex-
tended to the d0-Kernel method, unless d0 goes to zero appropriately as nB goes
to infinity.

5 A simulation study

In the previous sections we have formally evaluated the matching noise for a set of
widely used nonparametric imputation techniques. In order to compare the match-
ing noise of these different imputation methods we have performed a simulation
experiment. In detail, we have randomly generated 500 i.i.d records from a bivari-
ate normal distribution (X, Z) with means 1, 3, and variances 5, 4, respectively,
and covariance 3. Let the recipient file A consist of these 500 observations, with Z
dropped. The simulation analysis involves the following steps:

• Step 1 : A donor sample B composed by nB i.i.d. records is drawn from the
same bivariate distribution. Different values of nB have been used, nB =
100− 1000/100.

• Step 2 : the missing Zs have been imputed by the following imputation
techniques.

1. Distance hot deck, with d(xA
a , xB

b ) = |xA
a − xB

b | (Section 3.2);

2. kNN with k =
√

nB , and g(.) corresponding to the mean function (mean
kNN, see Example 1) and to a random draw (random kNN, see Example
2), respectively . The value of k has been chosen according to Silverman
(Silverman (1986), page 19) .

3. kNN estimator of h(X) = E(Z|X) plus random residual, as defined in
Example 3.

4. d0-kernel with d0 chosen to minimize the asymptotic Mean Square Error
of the local kernel density function estimator of X (Section 4).

• Step 3 : steps 1 to 2 are repeated 400 times.
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In order to evaluate the closeness between the data generating model and the
imputation generating model a divergence measure between the two distributions
fXZ̃(x, z) and fXZ(x, z) should be introduced. Such a divergence (matching noise)
has been evaluated by the Kolmogorov-Smirnov distance (KS). We begin by eval-
uating to which extent the imputation procedures are able to recovery the marginal
distribution of Z in the synthetic data file. Formally speaking, for each donor sam-
ple v (for v = 1, 2, . . . , 400 ), KS distance compares the empirical distribution of
imputed values Z̃ in A (F̂Z̃,v(z)) with the hypothesized distribution (F0(z)). A
mean of such values over the 400 donor files is then taken as a global divergence
measure, namely :

KSZ =
1

400

400∑
v=1

KSZ(v) =
1

400

400∑
v=1

[
sup

−∞<z<∞
| F0(z)− F̂Z̃,v(z) |

]
(11)

Moreover, in order to analyze the matching noise as nB increases, (11) has been
computed for different donor file sizes nB (Figure 1).

Note that for all nonparametric imputation techniques, the matching noise
decreases as the donor file size nB increases. Loosely speaking, the mean kNN+
residual technique seems to perform slightly better than other donor methods.

The mean kNN is the worst method. This imputation technique underestimates
variability, and this worsens as k increases. In fact, the replacement of the expected
value of k nearest neighbors to each missing item implies that the synthetic distri-
bution of Z | X is concentrated on the expected value of Z | X.

Note that (11) evaluates the ability of the donor method to reproduce the
marginal distribution of Z in the synthetic data set. In order to get information
on the closeness of the two distributions fXZ̃(x, z) and fXZ(x, z), the Kolmogorov-
Smirnov distance has been computed between the empirical conditional distribu-
tion of Z | X = xA

a , a = 1, . . . , 500 (F̂Z̃|xA
a
(z)) and the hypothesized distribution

(F0|xA
a
(z)). A mean of the nA = 500 values is then taken :

E[KSX
Z ] ≈ 1

500

500∑
a=1

KSZ(xA
a ) =

1
500

500∑
a=1

[
sup

−∞<z<∞
| F0|xA

a
(z)− F̂Z̃|xA

a
(z) |

]
(12)

The results are reported in Figure 2. The distance hot deck and random kNN
methods seem to perform better. Furthermore their matching noise is approxi-
mately constant as nB increases. In conclusion Figures 1 and 2 suggest that the
imputation techniques give equivalent results with the exception of the mean kNN
method. More precisely, in both figures the distances between the matching noise
curves associated to distance hot deck, random kNN and mean kNN+residual meth-
ods are so small that further analyses are required to evaluate their performance.
These should be carried out increasing both the number of samples and their sizes,
taking in mind that even the use of a high-speed computer can lead to excessively
long calculation times. The same consideration holds for the Figures 3 and 4 re-
garding the d0-Kernel method.

The nonparametric imputation methods defined in step 2 depend on a single
parameter k, the number of nearest neighbors. These techniques operate given the
donation class size. As already mentioned, an obvious extension is to consider a
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different number of donors for each record. More precisely, we study the d0-Kernel
hot deck described in Section 4: the main problem is how to choose d0.

Since the simulation study is carried out to compare the performance of different
imputation techniques, we use knowledge on the data generating mechanism to
define d0. Its value has been chosen to minimize the asymptotic Mean Square
Error of the local kernel density function estimator of X and it is proportional
to n−1/5 (Silverman (1986)). Clearly in applied studies the choice of d0 is more
complicated.

The effect of the d0-Kernel method to avoid far away donors from xA
a is evident

in the tails of the distribution. As a consequence, we expect a better performance
of the d0-Kernel in terms of matching noise, since the method should be able to
dose the optimal amount of smoothing across the real line.

By comparing the mean kNN+residual technique both with fixed and variable
number of donors k, it appears that the latter performs slightly better than the
former. On the other side, the mean imputation method performs worse than the
method with a fixed number of donors k. In fact, since the expected value of the
random variable k̃ is bigger than

√
nB , the d0-Kernel technique averages on a larger

number of neighbours.
Instead of the full distribution of (X, Z), it is possible to measure the perfor-

mance of the imputation procedures when the aim is the estimation of some sta-
tistically meaningful parameters, such as the expectation of Z (µZ , say), and the
correlation coefficient between the variables of interest (ρX,Z , say). For each non-
parametric imputation technique, both with fixed and variable number of donors
k, the performance of the sample mean and the sample correlation coefficient has
been evaluated in terms of Mean Square Error (Figures 5 and 6).

Figure 5 shows that the mean kNN technique better estimates µZ , since it
generates the best point estimate with regard to a quadratic loss function. This
result can be considered as the nonparametric counterpart of results in Buck (1969).
Nevertheless, it should not be consider as a good matching method for a general
purpose matched file (X, Z̃). For instance, this is confirmed by the Mean Square
Error of the correlation coefficient estimator (Figure 6). The imputation mean
method does not preserve the relationship between the variables of interest in the
synthetic complete data set. The distance hot deck and random kNN methods
preserve the relation between X and Z slightly better than the other methods.

Note that this analysis does not yet allow us to discriminate between the d0-
Kernel and the kNN methods because the results for both the sample mean and
the sample correlation coefficient are essentially the same.

There are two practical improvements that we plan to pursue in a future work.
The first one is to implement further analyses increasing both the number of sam-
ples and their sizes. A second application is to investigate the use of nonparametric
regression methods as the local polynomial regression (Härdle (1990)), as an addi-
tional method to reconstruct the synthetic data file.
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