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Abstract

This study is motivated by an electoral application where we look into
the following question: how much biased can the assignment of parliament
seats be in a majority system under the effect of vicious gerrymandering
when the two competing parties have the same electoral strength? To
give a first theoretical answer to this question, we introduce a stylized
combinatorial model, where the territory is represented by a rectangular
grid graph, the vote outcome by a “balanced” red/blue node bicoloring
and a district map by a connected partition whose components all have
the same size. We constructively prove the existence in cycles and grid
graphs of a balanced bicoloring and of two antagonist “partisan” district
maps such that the discrepancy between their number of “red” (or “blue”)
districts for that bicoloring is extremely large, in fact as large as allowed
by color balance.

Keywords: graph partitioning, graph coloring, gerrymandering.

1 Introduction

Not long after the dawn of modern democracies, in which the lawmaking power
is delegated by citizens to elected representatives, insidious practices started to
creep in, aimed to favor a certain candidate or party through the artful design of
the electoral district boundaries. These malpractices, which came to be known
under the name of gerrymandering 1, have occurred numerous times throughout
the modern history of elections (see [6]) and pose a dangerous threat even nowa-
days [1]. In order to oppose gerrymandering practices, some districting criteria
are commonly adopted: integrity (no unit may be split between two or more

∗Università di Roma “La Sapienza”, Dip. Statistica, Probabilità e Statistiche Applicate
†University of Cape Town, Dep. of Mathematics and Applied Mathematics.
‡The present research was partially supported by a fund from the Italian Ministry of
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1In 1810 Elbridge Gerry, governor of Massachusetts, enacted a salamander-shaped district

so as to enhance the probability of being re-elected. Hence the term “Gerrymander” (a
contraction of Gerry+Salamander).
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Figure 1: Example by Dixon and Plischke: (a) Party P wins 1 seat and party
C wins 8; (b) Party P wins 7 seat and party C wins 2.

districts); contiguity (the units within the same district should be geographi-
cally contiguous); population equality (the district populations should be equal
or nearly equal, especially in majoritarian systems); compactness (each district
should be compact, that is, according to the Oxford Dictionary, “closely and
neatly packed together”); conformity to administrative boundaries (the elec-
toral district boundaries should not cross other administrative boundaries, such
as those of regions, provinces, local or minority communities).

The aim of the present paper is to give a theoretical answer to the ques-
tion: “how bad can the outcome of gerrymandering be?” Basically, our answer
will be: “as bad as materially possible” (we are going to give a precise mean-
ing to this statement later). Our worst-case analysis will be performed on a
stylized combinatorial model of elections, which generalizes the one proposed
in Dixon and Plischke’s (1950) classical example, showing how gerrymandering
can dramatically reverse the election outcome.

We recall here Dixon and Plischke’s conceptual model.
Suppose that only two parties P and C compete under a first-past-the-post

system and that, as in Figure 1, the territory is divided into elementary units
having the same population with an homogeneous electoral behavior, that is,
the whole population of an elementary unit votes for the same party. If the
district map of Figure 1 (a) is adopted, party C wins in 8 districts out of 9;
however, if the alternative district map of Figure 1 (b) is adopted, party C wins
only in 2 districts out of 9, so the outcome is drastically reversed.

Notice that in this example the two parties feature nearly equal overall elec-
toral strengths: 24 units vote for party C and 21 units vote for party P. Like-
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wise, in our analysis we shall assume that the total number of votes is equally,
or nearly equally, split between the two parties.

A careful look at Figure 1 gives us a clue about an effective strategy for
maximizing the number of districts won by either party: the districts should be
designed so that every win should be close and every loss should be sweeping.

2 Problem statement and paper outline

In this section we shall consider an idealized graph-theoretic formulation that
captures the essence of the artificial example by Dixon and Plischke. Given a
territory composed by territorial units, define the following integers:

• n is the number of territorial units;

• p is the number of districts;

• s is the common district size (number of territorial units in each district).

Clearly, the three parameters n, p, s must satisfy the relation n = ps.
We model the territory as an undirected graph G = (V,E) with |V | = n,

where the vertices represent territorial units and the edges represent adjacency
between territorial units.

A connected partition of G is a partition of its set of vertices V such that
each component induces a connected subgraph of G.

A district design is a connected partition of the graph into p components
or districts of the same size. Notice that this definition takes into account the
criteria of integrity, contiguity and population equality.

A vote outcome is a bicoloring of the vertices that assigns to each vertex
either the color blue or the color red: this means that all voters in the corre-
sponding unit vote for the same party, blue or red, respectively. A vote outcome
is balanced if the total number nb of blue vertices and that nr of red ones satisfy
the relation |nb − nr| ≤ 1; that is, nb = nr when n is even and, without loss of
generality, nb = nr + 1 when n is odd. A balanced vote outcome corresponds
to a situation in which the electoral population is split as equally as possible
between two parties.

From now on we shall consider only balanced vote outcomes. We shall also
make the following assumptions on the integers n, s, and p:

• s is odd and greater then or equal to 3: this assumption forbids trivial
cases and ties between the two parties;

• the relation n = ps holds.

We will denote by Π the set of all district designs and by Ω the set of all
possible balanced vote outcomes.
If in a district D the number of blue vertices is greater than the number of
red ones, we will say that D is a blue district. In a similar way we define a
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red district. Given a district design π ∈ Π, we will refer to the corresponding
partition as a blue partition if the number of blue districts in π is greater than
the number of red ones. In a similar way we define a red partition.

We define an electoral competition to be a pair (ω, π) such that ω ∈ Ω and
π ∈ Π. The functions b(ω, π) and r(ω, π), compute the number of blue and red
districts, respectively, resulting from the electoral competition (ω, π). Let

B(G) = max
ω∈Ω,π∈Π

b(ω, π)

be the maximum number of blue districts for all the electoral competitions
(ω, π) ∈ Ω×Π. In a similar way we can define R(G).

Under the vote balance condition, whatever the district design, neither party
can win in all districts, since the excess of blue votes in the blue districts must
be compensated by a surplus of red votes in the red districts. On these grounds,
in Sec. 4 we derive the following upper bounds on the maximum number of dis-
tricts that can be won by either party:

if n is even then
b(ω, π), r(ω, π) ≤ bn/(s + 1)c,

if n is odd then
b(ω, π) ≤ b(n + 1)/(s + 1)c

r(ω, π) ≤ b(n− 1)/(s + 1)c

For a given bicoloring ω ∈ Ω a partition π will be called (blue) extremal w.r.t.
ω if the number b(ω, π) of blue districts in π attains its upper bound. Similar
concepts can be introduced for the red party. It is not hard to prove that the
above upper bounds are sharp. An explicit formula for B(G) and R(G) ensues
(see Sec. 5). A more challenging problem consists in finding, for a given ω ∈ Ω,
the range of all possible values for the number b(ω, π) of blue districts when
π ∈ Π. Having this in mind, we formally introduce the following optimization
problem:

GAP(G) = max
ω∈Ω

(max
π∈Π

b(ω, π)−min
π∈Π

b(ω, π)).

For a given graph G the function GAP(G) is a measure of the maximum bias
of an electoral outcome in terms of number of seats in single member majority
districts.

Our main results imply that any grid graph has the following property: there
exist both a blue extremal partition and a red extremal partition relative to the
same balanced vote outcome. Graphs having this property, and the correspond-
ing balanced vote outcome, will be called two faced. In a two faced graph, we
can obtain a simple explicit formula for the gap. In this case, gerrymandering
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has the ability to reverse, as much as permitted by sheer vote balance, the out-
come of an election in terms of parliament seats.

Here is an outline of our paper. After providing the electoral motivation of
our study (Sec. 1) and formally defining the graph-theoretic problems under
investigation together with the appropriate notation (Sec. 2), in Section 3 we
discuss the existence in a graph of a connected partition into equally sized com-
ponents, both from a theoretical and complexity viewpoint. Section 4 presents
some useful arithmetic properties of extremal partitions in an arbitrary graph.
Section 5 includes our main results: all cycles and all grid graphs are two faced.
In fact, the result for cycles implies that every hamiltonian graph is two faced;
in particular, even grid graphs are such (the result for odd grid graphs is trick-
ier to prove). Finally, in Section 6 we exhibit some simple and not so simple
examples of graphs that are not two faced.

Some of our results were presented in a previous paper of ours [2], where,
however, only the case of even n was dealt with and different constructions
(“boas”) were employed.

3 Equipartitionable graphs

Let, as before, n = ps, s odd.

Definition 1 A (connected) s-equipartition of G is any partition π = {C1, . . . , Cp}
such that, for each k = 1, . . . , p:

(i) Ck induces a connected subgraph of G;

(ii) |Ck| = s.

Notice that in the previous section district designs have been modelled as (con-
nected) s-equipartions of graphs.

Definition 2 G is s-equipartitionable if there exists some s-equipartition of G.

In the present section we deal with the question of the existence of (connected)
s-equipartitions in a graph. If the graph has n vertices, an obvious necessary
condition is that s divides n, that is, n = ps for some positive integer p, which
may be interpreted as the number of components of the partition. We assume
throughout this section that this easy condition always holds.

Proposition 1 s-equipartitionable trees can be recognized in linear time.

Proof. Root the tree T at any vertex. By a bottom-up recursion, count the
number νi of descendants of each node i (including i itself) in the current tree.
Whenever some i for which νi = s is found, delete from the current tree i and
all its descendants. If the algorithm at the end returns the empty tree, then T is
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s-equipartitionable. On the other hand, if some i is found, such that νi > s and
νj < s for each child j of i in the current tree, then T is not s-equipartitionable.
Such procedure can be clearly implemented in linear time; it may be viewed
as a special case of an algorithm by Kundu and Misra [7], for min-max tree
partitioning. 2

Proposition 2 Any s-equipartitionable tree admits a unique s-equipartition.

Proof. Any s-equipartitionable tree T has an edge e such that one of the two
branches T1 and T2 resulting from cutting e has exactly s vertices. We claim
that e must be cut in every s-equipartition of T : otherwise, any cut would
occur within either T1 or T2. In the former case, a component with less than s
vertices would be found; if no cut falls within T1 then the component containing
e would have more than s vertices. The statement then follows by induction on
the number of cuts. 2

Theorem 1 A connected graph is s-equipartitionable if and only if it has some
s-equipartitionable spanning tree.

Proof. The if) is trivial. Let us prove the only if). Let π = {C1, . . . , Cp}
be any s-equipartition of G; let Tk be a spanning tree of the subgraph G(Ck)
induced by Ck. For each k, declare all edges of Tk to be green. Let B(π) be the
block-incidence graph of G w.r.t. π: that is, the nodes of π are the components
Ck, and any two nodes of B(π) are adjacent iff the corresponding components
of π are adjacent. Let T be any spanning tree of B(π). For each edge (Ch, Ck)
in T, select in G one edge between Ch and Ck, and declare also any such edge
to be green. The partial graph of G spanned by all green edges is the required
s-equipartitionable spanning tree. 2

Remark 1 The above proof is nonconstructive and does not imply that graphs
that are s-equipartitionable can be recognized in polynomial time: finding the
required spanning tree might be computationally hard.

Corollary 1 If s is any positive divisor of n, any graph with a hamiltonian
path (in particular, any hamiltonian graph) is s-equipartitionable. Thus, all
grid graphs are s-equipartitionable, since they are hamiltonian if n is even and
they have a hamiltonian path if n is odd.

Actually, a stronger result holds:

Theorem 2 Every grid graph with n = ps vertices admits an s-equipartition in
which all the components are grid graphs with the same number of rows and the
same number of columns.

Proof. Let M be the number of rows and N the number of columns of a given
grid graph. Since MN = ps, there exist four natural numbers M1, M2, N1 and
N2 such that:

M = M1M2, N = N1N2, M1N1 = s, M2N2 = p.
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Figure 2: Decomposition of a grid graph with M rows and N columns into p
grid subgraphs with M1 rows and N1 columns.

As shown in Figure 2, by partitioning the columns of G into N2 components
having N1 columns each and the rows of G into M2 components having M1

columns each, one can decompose G into p grid subgraphs having M1 rows and
N1 columns each. Notice that, when s is odd, also M1 and N1 are odd. 2

The above positive results for trees and grid graphs may lead one to hope
that the property of being s-equipartitionable can be easily recognized, at least
in bipartite graphs. The following negative result, by Dyer and Frieze [4], defeats
this hope.

Theorem 3 Let G be a graph with n vertices, and let s be a positive integer
divisor of n. Deciding whether G is s-equipartitionable is NP-complete even
when G is bipartite.

However, when G is sufficiently connected, G turns out to be s-equipartitionable,
as Corollary 2 below shows.

Theorem 4 If G is p-connected and s1, . . . , sp are any p positive integers such
that s1 + . . . + sp = n, then there always exists a connected partition of G into
p components with sizes s1, . . . , sp, respectively.

Proof. See Győri, 1976 [5] and Lovász, 1979 [8]. 2

Corollary 2 Every p-connected graph with n = ps vertices is s-equipartitionable.

Remark 2 As far as we know, neither Győri’s graph-theoretical proof nor the
topological one by Lovász directly provides a polynomial time algorithm for con-
structing the required s-equipartition.

Fortunately, in the present paper we need to deal only with paths, cycles,
and grid graphs; for these graphs, as mentioned above, the condition n = ps is
both necessary and sufficient for the existence of an s-equipartition.
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4 Structure and arithmetic properties of extremal
partitions in general graphs

We start this section with some upper bounds on the number of blue and red
districts in a given district design for a given vote outcome. Given an electoral
competition (ω, π) ∈ Ω×Π, for any district k, k = 1, ..., p, let

• bk be number of blue vertices in district k;

• rk be number of red vertices in district k;

• δ =
{

0 if n is even
1 if n is odd .

Proposition 3 Given an s-equipartitionable graph G, for any (ω, π) ∈ Ω × Π
the following inequalities hold:

b(ω, π) ≤ b(n + δ)/(s + 1)c,

r(ω, π) ≤ b(n− δ)/(s + 1)c.

Proof. Since ω is balanced, we may assume:∑
k=1,...,p

(bk − rk) = δ.

Hence:

δ =
∑

k=1,...,p

(bk − rk) =
∑

k:bk>rk

(bk − rk) +
∑

k:bk<rk

(bk − rk)

≥ b(ω, π)− s(p− b(ω, π)) = (s + 1)b(ω, π)− sp.

Since n = ps and b(ω, π) is a natural number we obtain:

b(ω, π) ≤ b(n + δ)/(s + 1)c.

Similarly

−δ =
∑

k=1,...,p

(rk − bk) =
∑

k:rk>bk

(rk − bk) +
∑

k:rk<bk

(rk − bk)

≥ r(ω, π)− s(p− r(ω, π)) = (s + 1)r(ω, π)− sp.

Then
r(ω, π) ≤ b(n− δ)/(s + 1)c.

2

Corollary 3 If G is s-equipartitionable, then the bounds in Proposition 3 are
sharp. Hence B(G) = b(n + δ)/(s + 1)c and R(G) = b(n− δ)/(s + 1)c.
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Proof. Let π ∈ Π be any district design. It is always possible to color the
vertices of the graph G in such a way that b(n + δ)/(s + 1)c districts have at
least (s+1)/2 blue vertices. In fact, in any balanced vote outcome, the number
of blue vertices is (n + δ)/2 and:

s + 1
2

⌊
(n + δ)
s + 1

⌋
≤ (n + δ)

2
.

Since a district with (s + 1)/2 blue vertices is blue, we obtain a vote outcome
with at least b(n + δ)/(s + 1)c blue districts. But, by Proposition 3, this is an
upper bound for the number of blue districts, hence B(G) = b(n + δ)/(s + 1)c.

A similar argument can be used to prove that R(G) = b(n− δ)/(s + 1)c.
2

Corollary 4 If G is s-equipartitionable, and p = q(s+1)+r with 1 ≤ r ≤ s+1
then 2:

B(G) =
{

qs + r − 1 if r ≥ 2
qs + r if r = 1

and
R(G) = qs + r − 1.

Hence B(G) = R(G), unless r = 1, in which case B(G) = R(G) + 1.

Proof. From Corollary 3 one has:

B(G) =
⌊

n + δ

s + 1

⌋
= qs +

⌊
rs + δ

s + 1

⌋
.

Since r − δ ≤ s + 1,⌊
rs + δ

s + 1

⌋
=

⌊
r − r − δ

s + 1

⌋
=

{
r − 1 if r ≥ 2
r if r = 1

hence

B(G) =
{

qs + r − 1 if r ≥ 2
qs + r if r = 1 .

Similarly, from Corollary 3 one has:

R(G) =
⌊

n− δ

s + 1

⌋
= qs +

⌊
rs− δ

s + 1

⌋
.

Since r + δ ≤ s + 1, ⌊
rs− δ

s + 1

⌋
=

⌊
r − r + δ

s + 1

⌋
= r − 1

hence
R(G) = qs + r − 1.

2

2Notice that q and r might not coincide with the quotient and the remainder, respectively,
of the division of p by s + 1.
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Let γ be defined as follows:

γ =
{

0 if r ≥ 2
1 if r = 1 .

We can write:
B(G) = qs + r − 1 + γ.

The following result relates the function GAP(G) to B(G) and R(G).

Proposition 4 GAP(G) ≤ B(G) + R(G)− p.

Proof. Since b(ω, π) + r(ω, π) = p, then

GAP(G) = max
ω∈Ω

(
max
π∈Π

b(ω, π) + max
π∈Π

r(ω, π)
)
− p ≤ (1)

max
ω∈Ω

max
π∈Π

b(ω, π) + max
ω∈Ω

max
π∈Π

r(ω, π)− p = B(G) + R(G)− p.

2

Corollary 5 We have

GAP(G) = B(G) + R(G)− p (2)

if and only if G is two faced (as defined in Section 2).

Proof. Follows from (1). 2

Two faced graphs are those for which gerrymandering exhibits its worst case
bias. There is an absolute threshold for the maximum number of seats that
a party can obtain when the vote outcome is balanced. In two faced graphs,
for a suitable balanced vote, both parties can achieve this threshold by artful
gerrymandering. By Corollary 4 this threshold is equal for the red and the blue
party except when r = 1.

The colors of the vertices within districts in an extremal partition follow a
well defined scheme. In a blue (red) extremal partition, the blue (red) vertices
are distributed among the districts in such a way that each blue (red) district
has at least (s + 1)/2 blue (red) vertices and the number of blue (red) districts
is maximum.

Let kB be the maximum number of blue vertices that belong to red districts
in a blue extremal partition and kR be the maximum number of red vertices
that belong to blue districts in a red extremal partition. Proposition 5 yields
the actual values of kB and kR; as expected, they are smaller than (s + 1)/2.

Proposition 5 We have:

kB =
s− r + 1 + δ

2
− γ

(
s + 1

2

)
kR =

s− r + 1− δ

2
.
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Proof. Recall that n = sp = qs(s + 1) + rs. A blue district must contain at
least (s + 1)/2 blue vertices. Since B(G) = qs + r − 1 + γ, we have:

kB =
qs(s + 1) + rs + δ

2
−(qs+r−1+γ)

(
s + 1

2

)
=

s− r + 1 + δ

2
−γ

(
s + 1

2

)

Similarly, a red district must contain at least (s + 1)/2 red vertices. Since
R(G) = qs + r − 1, we have:

kR =
qs(s + 1) + rs− δ

2
− (qs + r − 1)

(
s + 1

2

)
=

s− r + 1− δ

2

2

Given a bicoloring ω ∈ Ω and a partition π ∈ Π, we say that a district is:

• (blue) edgy if it contains (s+1)/2 blue vertices and (s− 1)/2 red vertices;

• (red) edgy if it contains (s + 1)/2 red vertices and (s− 1)/2 blue vertices;

• (blue) sweeping if all its vertices are blue;

• (red) sweeping if all its vertices are red;

• (blue) quasi sweeping if it contains kR red vertices and s−kR blue vertices;

• (red) quasi sweeping if it contains kB blue vertices and s−kB red vertices.

Notice that quasi sweeping districts could be sweeping.
We say that a blue (red) extremal partition is blue (red) edgy if all blue (red)

districts are edgy. We will use these extremal partitions in the next section,
where we will show that s-equipartitionable cycles and grid graphs are two
faced. Table 1 contains useful information related to edgy extremal partitions.

Blue edgy extr. part. Red edgy extr. part.
N. of edgy districts qs + r − 1 + γ qs + r − 1

N. of sweeping districts q q
N. of quasi sweeping districts 1− γ 1

kB , kR
s−r+1+δ

2 − γ( s+1
2 ) s−r+1−δ

2

Table 1: Arithmetic characteristics of edgy extremal partitions.

Remark 3 If r = 1 or r = s + 1 then kB = 0 and all blue extremal partitions
are edgy. Similarly, if r = s + 1 then kR = 0 and all red extremal partitions are
edgy.

Remark 4 If 1 ≤ p ≤ s + 1, each extremal partition has at most one quasi
sweeping district.
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Figure 3: The output of algorithm CycleBicoloring for (a) n = 30, s = 5; (b)
n = 35, s = 7.

5 Two facedness of cycles and grid graphs

5.1 Gerrymandering on cycles

In this section we will show that, under the hypothesis that s is odd, any cycle
H = (VH , EH) having n = sp vertices is two faced. Since H is a cycle, any
partition into p connected components can be obtained by cutting p edges.
Moreover any s-equipartition is uniquely determined by one of its cuts and can
be obtained from any other s-equipartition by a shifting of all cuts by t edges
in the same direction, for a given t ∈ {1, ..., s− 1}. In the following we will fix
a shifting direction, say clockwise, and, given an s-equipartition, we will call a
shifting of all cuts by t edges in this direction a t-rotation, t ∈ {1, ..., s− 1}.

We will show that any s-equipartitionable cycle admits a two faced bicoloring
of the vertices such that the red extremal partition can be obtained from the
blue one by an (s−1)/2-rotation. For this reason we will say that ρ = (s−1)/2
is the rotation number. Let a block be a subpath of H and a t-block be a
block having t vertices. Two blocks A and B are adjacent if in H there exist
two adjacent vertices v and u such that v ∈ A and u ∈ B. Notice that the
concatenation of a ρ-block and an adjacent (ρ + 1)-block is a district. We say
that a (ρ + 1)-block is blue complementable if, together with a ρ-block, it can
form a blue sweeping or quasi sweeping district of the red extremal partition.
Note that a blue complementable (ρ + 1)-block cannot contain more than kR

red vertices.
We call the attention of the reader on the fact that the case r = 1 is inherently

different from the case r ≥ 2 , since, by Corollary 4, it is the only case where the
number of red districts in a red extremal partition does not match the number
of blue districts in a blue extremal partition.

Let us consider the bicolored cycle of Figure 3 (a) where n = 30 and s = 5.
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In this case a blue edgy extremal partition has five blue edgy districts and one
red sweeping district and symmetrically a red edgy extremal partition has five
red edgy districts and one blue sweeping district. Here and in the following
figures we will represent blue vertices in black and red vertices in white. The
red edgy extremal partition can be obtained from the blue one by a ρ-rotation.

In Figure 3 (b) we consider a bicolored graph with n = 35 and s = 7. In
this case a blue edgy extremal partition has four blue edgy districts and one red
quasi sweeping district with kB = 2 blue vertices and and a red edgy extremal
partition has four red edgy districts and one blue quasi sweeping district with
kR = 1 red vertices. Also in this case the red extremal partition is obtained
from the blue one by a ρ-rotation. In both the examples, the cycle is partitioned
into a sequence of ρ-blocks and (ρ + 1)-blocks. Each ρ-block, together with one
of the adjacent (ρ + 1)-blocks, forms a district of the blue extremal partition
while, together with the other adjacent (ρ+1)-block, forms a district of the red
extremal partition. In the following we will present a bicoloring algorithm where
each block is colored taking into account both the blue and the red extremal
partitions.

We start by considering the case 3 ≤ p = r ≤ s + 1. If p ≥ 2 an edgy
extremal partition has one sweeping or quasi sweeping district and p − 1 edgy
districts. The cases p = 1, 2 are degenerate since a blue extremal partition is
also red extremal and viceversa. We present a bicoloring algorithm that visits
in a fixed direction the vertices of the cycle and assigns colors alternatively to
the vertices of a ρ-block and of a (ρ + 1)-block in such a way that each ρ-block
forms, together with the next (ρ + 1)-block, a district of an edgy blue extremal
partition and, at the same time, it forms, with the previous (ρ + 1)-block, a
district of the red edgy extremal partition.
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Algorithm CycleBicoloring (case 3 ≤ p ≤ s + 1)
pick a vertex and visit H clockwise;
let h := 0;
repeat

the next ρ-block has h red vertices and ρ− h blue vertices so that
it forms a red edgy district together with the previous (ρ + 1)-block
(at the beginning the previous (ρ + 1)-block is the last block
generated by the algorithm);
the next (ρ + 1)-block has ρ− h red vertices and h + 1 blue vertices
so that it forms a blue edgy district together with the previous ρ-block;
let h := h + 1;

until h = ρ− kR + 1, that is, the last (ρ + 1)-block is blue complementable
let h := 0;
repeat

the next ρ-block has h red vertices and ρ− h blue vertices so that
it forms a red edgy district together with the previous (ρ + 1)-block;
the next (ρ + 1)-block has ρ− h red vertices and h + 1 blue vertices
so that it forms a blue edgy district together with the previous ρ-block;
let h := h + 1;

until h = ρ− kB , that is, the total number of blue districts
2ρ− kB − kR + 1 is equal to its upper bound p− 1;
the next ρ-block has kB blue vertices and ρ− kB red vertices so that
it forms a red edgy district together with the previous (ρ + 1)-block;
the next (ρ + 1)-block has ρ + 1 red vertices so that it forms a blue
quasi sweeping district together with the previous ρ-block.

In the above algorithm the first “repeat” cycle colors ρ − kR + 1 blue edgy
districts and the second “repeat” cycle colors ρ − kB blue edgy districts. Re-
member that kB , kR ≤ ρ, so ρ − kB , ρ − kR ≥ 0. The last two colored blocks
form a blue quasi sweeping district. Hence the number of colored districts is
2ρ + 2 − kR − kB = p and the algorithm colors each vertex of the given cycle
exactly once.

We now formalize the bicoloring generated by the above algorithm. We
will denote S(h) a ρ-block containing h red vertices and L(h) a (ρ + 1)-block
containing h red vertices. A cobra C(i, j) is a sequence of blocks defined as
follows:

C(i, j) = S(i)L(ρ− i)S(i + 1)L(ρ− (i + 1)) . . . S(j)L(ρ− j)

if 0 ≤ i ≤ j ≤ ρ. We also define C(i, j) to be the empty sequence if i > j.
Notice that a cobra C(i, j) contains max{j − i + 1, 0} blue edgy districts.

A shifted cobra C(i, j) is the sequence:

C(i, j) = L(ρ + 1− i)S(i)L(ρ− i)S(i + 1) . . . L(ρ + 1− j)S(j)

if 0 ≤ i ≤ j ≤ ρ. As for cobras, C(i, j) is the empty sequence if i > j. A shifted
cobra contains max{j − i + 1, 0} red edgy districts.
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The following relations hold:

C(i, j) = S(i)C(i + 1, j)L(ρ− j)
C(i, j)S(j + 1) = S(i)C(i + 1, j + 1)
L(ρ + 1− i)C(i, j) = C(i, j)L(ρ− j).

(3)

The first “repeat” cycle of the bicoloring algorithm generates a cobra C(0, ρ−
kR) and the second “repeat” cycle generates a cobra C(0, ρ−kB −1). Then the
sequence given by the algorithm is:

C(0, ρ− kR)C(0, ρ− kB − 1)S(ρ− kB)L(ρ + 1).

This sequence admits a unique equipartition that is blue edgy extremal. On the
other hand, the sequence:

C(1, ρ− kR)L(kR)S(0)C(1, ρ− kB)L(ρ + 1)S(0)

admits a unique equipartition that is red edgy extremal. By relations (3), this
sequence can be obtained by a ρ-rotation from the previous one. Then the above
algorithm provides a bicoloring such that the colored cycle has a blue and a red
extremal partition.

Let us consider now the general case. As in Section 4 we write p = q(s+1)+r
where q ≥ 0 and 1 ≤ r ≤ s + 1. As shown in Corollary 4 a blue extremal par-
tition has qs + r − 1 + γ blue edgy districts and q + 1 − γ red sweeping or
quasi sweeping districts containing an overall number kB of blue vertices. A red
extremal partition has qs + r − 1 red edgy districts and q + 1 blue sweeping or
quasi sweeping districts containing an overall number kR of red vertices. One
can imagine the cycle with n = ps = qs(s + 1) + rs vertices partitioned into q
paths having (s + 1)s vertices each and one more path having rs vertices. In a
(blue or red) edgy extremal partition, for any of the first q paths there must be
one sweeping district and s edgy districts, while in the last path there must be
one quasi sweeping district and r − 1 edgy districts if r ≥ 2, or one blue edgy
(blue quasi sweeping in a red extremal partition) district if r = 1. Hence by
applying the bicoloring algorithm to each of the above paths we can show that
any s-equipartitionable cycle is two faced. The following algorithm finds a two
faced bicoloring for the general case. Here we use the notions of S(h) block,
L(h) block and cobra.

Algorithm CycleBicoloring (general case)
pick a vertex and visit H clockwise;
for q times

the next s(ρ + 1) vertices are a cobra C(0, ρ);
the next sρ vertices are a cobra C(0, ρ− 1);
the next s vertices are a sequence S(ρ)L(ρ + 1);

the next s(ρ− kR + 1) vertices are a cobra C(0, ρ− kR);
if r ≥ 2 then

the next s(ρ− kB) vertices are a cobra C(0, ρ− kB − 1);
the next s vertices are a sequence S(ρ− kB)L(ρ + 1).

15



Remark 5 If r = 2 then kB = ρ; hence the cobra C(0, ρ − kB − 1) is empty
and the sequence C(0, ρ − kR)C(0, ρ − kB − 1)S(ρ − kB)L(ρ + 1) contains two
districts.

Lemma 1 Algorithm CycleBicoloring colors n = ps vertices.

Proof. The “for” loop colors qs(s + 1) vertices.
Case r ≥ 2
kB , kR ≤ ρ, so the last two cobras generated by the algorithm contain 2ρ−kR−
kB + 1 = r − 1 districts. Then, adding the district S(ρ− kB)L(ρ + 1), we have
q(s + 1) + r = p colored districts, that is n = ps colored vertices.
Case r = 1
kR = ρ, so the last cobra generated by the algorithm contain one district. Hence
we have q(s + 1) + r = p colored districts, that is, n = ps colored vertices. 2

The above algorithm generates the following sequence:

q times: C(0, ρ)C(0, ρ− 1)S(ρ)L(ρ + 1)
C(0, ρ− kR)
C(0, ρ− kB − 1)S(ρ− kB)L(ρ + 1), if r ≥ 2.

(4)

Lemma 2 The unique s-equipartition of sequence (4) is blue extremal.

Proof. The q pairs of cobras C(0, ρ), C(0, ρ−1) contain qs blue edgy districts.
Case r ≥ 2
The two cobras C(0, ρ−kR) and C(0, ρ−kB−1) contain 2ρ−kR−kB +1 = r−1
blue edgy districts.
Case r = 1
The cobra C(0, ρ− kR) contains one edgy district if r = 1.

Hence in any case the upper bound on the number of blue edgy districts is
attained. 2

By relations (3), after a ρ-rotation, the sequence provided by the algorithm is:

q times: C(1, ρ)L(0)S(0)C(1, ρ)L(ρ + 1)S(0)
C(1, ρ− kR)L(kR)S(0)
C(1, ρ− kB)L(ρ + 1)S(0) if r ≥ 2.

(5)

Remark 6 If r = 1 then C(1, ρ− kR) is empty; if r = 2 then both C(1, ρ− kR)
and C(1, ρ− kB) are empty.

Lemma 3 The unique s-equipartition of sequence (5) is red extremal.
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Proof. The q sequences C(1, ρ), L(0), S(0), C(1, ρ), L(ρ + 1), S(0) contain qs
red edgy districts.
Case r ≥ 2
The sequence C(1, ρ − kR)L(kR)S(0)C(1, ρ − kB)L(ρ + 1)S(0) has 2ρ − kR −
kB + 1 = r − 1 red edgy districts. Hence the total number of red edgy districts
is qs + r − 1.
Case r = 1
The cobra C(1, ρ−kR) is empty, then the total number of red edgy districts is qs.

Hence in each case the upper bound on the number of red edgy districts is
attained. 2

Theorem 5 Any cycle with n = ps vertices is two faced.

Proof. Follows from Lemmas 1, 2 and 3. 2

Corollary 6 Any hamiltonian graph with n = ps vertices is two faced.

Proof. Follows from Theorem 5. 2

Corollary 7 Let Hs(s+1) be a cycle with n = s(s+1) vertices, to be partitioned
into p = s + 1 districts, each of size s. Then

limodd s→∞
GAP(Hs(s+1))

s + 1
= 1.

Proof. After Corollary 5 and Theorem 5, one has

GAP(Hs(s+1))
s + 1

=
B(G) + R(G)− s− 1

s + 1
=

2s− s− 1
s + 1

=
s− 1
s + 1

.

When s odd →∞, the thesis follows. 2

Corollary 7 is really stunning: it means that, for certain infinite families of
cycles, as the number and size of the districts grow, vicious gerrymandering can
make the percentages of blue districts and red ones both arbitrarily close to 1
even under the assumptions that the vote outcome is the same and that the
blue party and the red one get the same total number of votes.

5.2 Gerrymandering on grid graphs

In this section we will show that any s-equipartitionable grid graph with M
rows and N columns, M , N ≥ 2, is two faced. As shown in Section 3, any grid
graph with n = ps vertices is s-equipartitionable. Notice that, if M = 1 or
N = 1, the graph is a path, then it cannot be two faced since it admits a unique
s-equipartition.

Theorem 6 Any s-equipartitionable grid graph with M , N ≥ 2 and with an
even number of vertices is two faced.
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Figure 4: Hamiltonian cycle in a grid graph with an even number of rows.

Proof. If n is even, so that at least one of M and N is even, then it is well
known and easy to show that G is hamiltonian (see Figure 4). By Theorem
5, any s-equpartitionable cycle is two faced, and hence it follows that any s-
equipartitionable grid graph having an even number of vertices is two faced.

2

Let us consider now the case n = MN odd. By Theorem 2, we can decom-
pose G into a grid subgraph Gs = (Vs, Es) having s vertices and Ms rows and
Ns columns and a subgraph Gs induced by the vertices in V − Vs (see Figure
5). We can suppose that Gs contains one of the vertices of G having degree 2,
that is, one of the vertices on a corner of G. Since M , N and s are odd, Ms and
Ns are odd and M −Ms and N −Ns are even. Hence Gs is a grid graph with
an even number of rows or columns, or can be decomposed into two grid graphs
which have an even number of rows, equal to M −Ms, and an even number of
columns, equal to N −Ns, respectively. As shown in the example of Figure 5,
Gs has a hamiltonian cycle that can be obtained by appropriately joining the
hamiltonian cycles of these grid subgraphs. Moreover Gs is s-equipartitionable
since it contains n− s vertices, hence, by Theorem 5, it is two faced.

Suppose, without loss of generality, that Ms ≤ Ns and Gs is the top left
corner of G. Consider the unique row of Gs such that all its vertices are adjacent
to vertices of Gs. Since s ≥ 3, this row contains at least three vertices. Let u
and v be two adjacent vertices of this row such that u is the bottom left corner
of Gs (see Figure 5). Notice that u is not an articulation vertex of Gs.

Remark 7 There exists a hamiltonian path of Gs having two adjacent vertices
u and v that are adjacent to u and v, respectively.

The bicoloring of G provided by the following algorithm is two faced.
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Figure 5: Decomposition of G and hamiltonian cycle of Gs.

Algorithm GridBicoloring (case n odd)
decompose G into Gs and Gs (see Figure 6 (a));
let u, v, u and v be as defined above;
color in red ρ vertices of Gs and in blue ρ + 1 vertices of Gs

in such a way that u is blue;
let H be a hamiltonian cycle of Gs such that
u and v are adjacent;
color H using the algorithm CycleBicoloring in such a way that, if r ≥ 2,
v and u belong to the blue quasi sweeping district of the red extremal
partition and v is red and is not an articulation vertex of the district.

Lemma 4 The bicoloring provided by Algorithm GridBicoloring is balanced.

Proof. Since n and s are odd, n− s is even; hence, by construction, H has an
even number of vertices, (n− s)/2 red and (n− s)/2 blue. It follows that G has
(n− 1)/2 red vertices and (n + 1)/2 blue vertices. 2

Lemma 5 Any s-equipartitionable grid graph with an odd number of vertices
colored by Algorithm GridBicoloring has a blue extremal partition.

Proof. Let πB be the blue extremal partition of H, which has qs blue edgy
districts if r = 1 and qs + r − 2 blue edgy districts if r ≥ 2. Since Vs is blue
edgy, the partition πB = πB ∪ Vs of G has qs + r blue edgy districts if r = 1
and qs + r − 1 blue edgy districts if r ≥ 3. Hence πB is blue extremal. 2

Lemma 6 Any s-equipartitionable grid graph with an odd number of vertices
colored by Algorithm GridBicoloring has a red extremal partition.
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Figure 6: Construction of a red extremal partition of G.
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Proof. Let πR be the red extremal partition of H, which has qs red edgy
districts if r = 1 and qs + r − 2 red edgy districts if r ≥ 3. If r = 1, since Vs is
blue edgy, the partition πR = πR∪Vs of G has qs red edgy districts and so is red
extremal. If r ≥ 3, πR has a blue quasi sweeping district W with (s− r + 2)/2
red vertices, one more than in a blue quasi sweeping district of G. Moreover, Vs

has one red vertex less than a red edgy district. Let W ′ = W − {v} ∪ {u} and
V

′

s = Vs − {u} ∪ {v}. W ′ is a red edgy district and Vs is a blue quasi sweeping
district of G. The partition πR = πR − W ∪ W ′ ∪ V

′

s of G has qs + r − 1 red
edgy districts (see Figure 6 (b)). Hence πR is red extremal. 2

Theorem 7 Any s-equipartitionable grid graph with at least two rows and two
columns is two faced.

Proof. Follows from Theorem 6 and Lemmas 4, 5 and 6. 2

In conclusion, we have shown that for all hamiltonian graphs and grid graphs
one can construct Dixon-Plischke-like examples where gerrymandering can heav-
ily reverse the electoral result in terms of Parliament seats.

6 Examples of non two faced graphs

In the previous section we have shown that all hamiltonian graphs and all grid
graphs are two faced. But do non two faced graphs exist? An immediate
example is given by trees since they admit a unique s-equipartition. Looking
for more significant examples we notice that both cycles and grid graphs are
2-connected, bipartite and planar. Here is an example of a graph sharing these
properties, but not two faced.

Consider the graph G on 18 vertices in Figure 7 and let s = 3. It is easy to see
that in every connected 3-equipartition of G vertices 1, 2, and 3 must belong to
the same component and the same must hold for vertices 10, 11, and 12. Thus, a
connected 3-equipartition of G is always given by the two components {1, 2, 3},
{10, 11, 12} and four additional components obtained by splitting each of the
two hexagons into two parts. Hence, every pair of connected 3-equipartitions of
G has at least two components in common. Since for every possible bicoloring
of the vertices of G the common components of the two partitions will be always
colored in the same way, no pair of connected 3-equipartitions, one blue extremal
and one red extremal, can be found in G w.r.t. s = 3.

The graph G shown in Figure 7 is non two faced for s = 3, due to the
fact that it is not possible to find a pair of connected 3-equipartitions without
common components. In our third and last example this is indeed possible but
there is a subtler reason for which G is not two faced.
Consider the graph G shown in Figure 8, with n = 30 and s = 5. Let C be the
cycle induced in G by {1, 2, 3, 4, 5, 6, 7, 8, 9} and P the path given by vertices
from 10 to 30.
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Figure 7: The graph G is non two faced since a pair of connected 3-equipartitions
without common components cannot be found in G.

Claim 1 In every connected 5-equipartition of G the vertices 1, 29 and 30 never
belong to the same component.

Proof. Suppose that the claim is not true, that is, there exists at least a 5-
equipartition of G in which the component containing vertex 1 (and both 29
and 30) contains also a number m, m = 0, 1, 2, of vertices of C. In any case, the
remaining vertices of C form a path with a number of vertices ranging from 6 to
8. These vertices must belong to at least two components, but only one of them
contains vertex 10, implying that the other component is entirely contained in
C. Thus, the latter component must contain both vertices 5 and 6, while any
other connected component in C cannot contain more than three vertices. This
is a contradiction, since we assumed to have a 5-equipartition. 2

By the claim, in a connected 5-equipartition of G either:

1) vertex 29 and vertex 30 belong to the same component;

2) vertex 1 and vertex 30 belong to the same component.

A connected 5-equipartition matching condition 1 will be referred to as par-
tition of type I, while one that satisfies condition 2) will be called partition of
type II.

In a partition of type I there is always a component consisting of a path
of five vertices in C including vertex 1. Then, a second component is forced
to be formed by the remaining four vertices of C together with vertex 10.
The other components are uniquely generated by partitioning the path from
vertex 11 to vertex 30 into the four consecutive subpaths {11, 12, 13, 14, 15},
{16, 17, 18, 19, 20}, {21, 22, 23, 24, 25}, {26, 27, 28, 29, 30}.
A partition of type II is characterized by a component given by a path of 4
vertices in C, including vertex 1, attached to vertex 30. The rest of the vertices
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Figure 8: The graph G is non two faced since, given any pair of connected 5-
equipartitions in G without common components, no bicoloring of the vertices of
G exists such that one partition is blue extremal and the other is red extremal.

in C form another component, while the additional components of the parti-
tion are automatically provided by partitioning the path from vertex 10 to ver-
tex 29 into the four consecutive subpaths {10, 11, 12, 13, 14}, {15, 16, 17, 18, 19},
{20, 21, 22, 23, 24}, {25, 26, 27, 28, 29}.

On the basis of the above results, we know the structure of all the possible
connected 5-equipartitions of G, namely those of type I and II. We also notice
that all the partitions of type I share at least one common component (for
example, {26, 27, 28, 29, 30}), and the same holds for the partitions of type II
(for example, they share component {25, 26, 27, 28, 29}). In addition, along the
path from vertex 10 to vertex 30, the components of a partition of type I and
those belonging to a partition of type II differ by only one vertex. Then we have
the following.

Claim 2 The graph G shown in Figure 8 is not two faced for s = 5.

Proof. Suppose that the claim is not true, that is, G is two faced. In this case,
on the basis of the above considerations, the blue and red extremal partitions
(connected 5-equipartitions) must be of different types. Without loss of gener-
ality, suppose that the blue one is of type I and the red one is of type II. In the
blue partition of type I, let D be the component that contains vertex 1 and D′

the one that contains all the vertices of the cycle C that are not included in D;
similarly, in the red partition of type II, let F be the component that contains
vertex 1 and F ′ the one that contains all the vertices of the cycle C that are
not included in F . Given any two vertices i and j, we denote by ∆(i, j) the
difference between the number of blue vertices and the number of red vertices
belonging to the unique path from i to j (in counterclockwise order). Notice
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that function ∆(i, j) is additive w.r.t. the concatenation of consecutive paths.
It is not possible that one among D and D′ is red sweeping and, simultane-
ously, one among F and F ′ is blue sweeping, since, in this case, we would have
∆(11, 30) = 4 and ∆(10, 29) = −4, which is not possible. Thus, at least one of
the two sweeping components does not intersect C, but it is entirely contained
in path P . Suppose that it is red sweeping, then in P there should be a red
component with at least 4 red vertices; on the other hand, suppose that it is
blue sweeping, then in P there is a blue component with at least 4 blue vertices.
Both cases lead to a contradiction, showing that G is not two faced. 2
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