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Abstract

The Gulf of Trieste, North Adriatic (eastern Mediterranean), hosts a multidecadal (Jan-
uary 1986 -December 2005, monthly) mesozooplankton time series, which is ideal, for time
span and frequency, for investigating the impact of climate change on zooplankton popu-
lations. In this study we analyze selected copepod abundance time series to investigate
whether a stochastic differential equation approach can provide tools for predicting the pat-
tern of plankton abundance in function of climatic proxies variability. We consider a system
of stochastic differential equations and estimate their parameters by using the Euler scheme.
Furthermore, we carry out a forecasting analysis and compare the expected values obtained
with the real data in order to evaluate the reliability of the proposed models. The results
suggest that this approach is promising.

Keywords: Euler method, forecast, principal component analysis, stochastic differential
equations, zooplankton, decadal variability, climate impact.
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1 Introduction

Copepods are a group of small crustaceans, primarily marine, but also found in nearly every
freshwater habitat. They are probably the most numerous multicellular organisms on earth
(Mauchline, 1998), and constitute the biggest source of protein in the oceans. Planktonic cope-
pods (drifting in sea waters) are important to global ecology and the carbon cycle. They are
usually the dominant members of the zooplankton, and represent the basis for higher trophic
levels in the marine chain. Indeed, they are major food organisms for small fish, and thus are
responsible for transferring phytoplankton carbon to higher trophic levels, such as fish, birds,
and marine mammals. Although they can undertake substantial vertical migrations, they are ba-
sically passively transported by currents (in fact, the word plankton derives from the greek word
plank= to drift). This role is particularly important in the North Adriatic, as this is one of the few
regions of high permanent production in the Mediterranean Sea (Buljan, 1964; Fonda-Umani
et al., 1992; Fonda-Umani et al., 2004). The Gulf of Trieste is the northernmost section of the
Adriatic Sea, and is characterized by an overall shallowness and by large and variable freshwater
inputs (Fonda-Umani et al., 1992; Russo and Artegiani, 1996). For this work we have used the
copepod monthly time series in the Gulf of Trieste, one of the longest series in the Mediter-
ranean sea (1970-todate). The copepod community in the Gulf of Trieste is characterized by
a few (approximately 30) species, which in turn can exhibit high dominance (Kamburska and
Fonda-Umani 2006, Conversi et al., 2009).

The aim of the study is the investigation of the impact of climate changes on the abundance
of copepod populations. We start our analysis from monthly time series (subset January 1986 -
December 2005; chosen because the series contained no gaps) of the abundance of the nineteen
copepod taxa. Furthermore we consider three climate predictors, sea surface temperature (SST),
north hemisphere temperature (NHT) and east atlantic pattern (EA).

We face this problem by modelling the phenomenon via stochastic differential equations
(SDE). Stochastic differential equation models are widely used in different fields. These models
have a variety of applications in many disciplines and emerge naturally in the study of many
phenomena. In literature, examples of applications to physics (see e.g. Papanicolaou, 1995 for a
review), astronomy (Schuecker et al., 2001), social sciences (Cobb, 1981), mathematical finance
(Hull, 2000), geology (Ditlevsen et al., 2002), ecology (Holmes, 2004), biology (Ricciardi,
1977, Morale, Capasso, 2000, 2005), can be found. Gutierrez et al. (2008) proposed a bivariate
stochastic diffusion process to analyze the interdependence between Gross Domestic Product
and CO2 emissions in Spain. The reader interested to study in depth the probabilistic aspects of
these processes may consult for example Karatzas and Shreve (2001) or Capasso and Bakstein
(2004).

The widespread use of these models and their growing importance in many experimental
fields has led to develop their theoretical and practical statistical aspects. In the last decades
the research in this field moved along two different lines related to the observation schemes.
From one side, models related to the experimental observations of the whole sample path of the
process are investigated. The interested reader may refer to Kutoyants (1984, 2004). Recently
many statisticians and probabilists have been dealing with models related to a partially observed
framework, in which the sample paths of continuum processes are observed only at discrete
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instants of time. This sampling scheme is often closer to the reality, since most of times during
experiments, processes may be observed only a finite number of times; see Sørensen (2004) for
a review.

The model developed as part of this work represents each time series as a discretely ob-
served diffusion process. In order to reduce the dimension of the problem and thus the related
computational costs in the estimation procedure, we perform the analysis only on a subset of
the plankton species, which may be considered the most representative of the whole plankton
population. Then we propose to model trend-cyclical behaviors of the abundances by differ-
ent stochastic differential equations. The possible dependence of the abundance on the climate
predictors are modelled in the drift of the diffusion processes. By using a pseudo-likelihood
approach, we estimate the parameters of the model. Furthermore we carry out a forecasting
analysis to evaluate its performance.

The paper is organized as follows. In Section 2 we present an explorative analysis, per-
formed via a Principal component analysis, to reduce the data set to a lower dimension. This
means we have selected the more representative species of copepods, i.e. the species which best
explains the variance in the data. In Section 3 we model each chosen variable via a stochastic
differential equation with a linear diffusion. Moreover we present both theoretical and numer-
ical aspects of a pseudo-likelihood method based on the Euler scheme, used for estimating the
parameters. The results obtained for the estimates are quoted as well. In Section 4 we carry out
a forecasting analysis in order to evaluate the reliability of the adopted model. Finally in Section
5 we summarize and discuss the results. All the numerical and statistical analysis of this work
have been performed using R statistical environment (R Development Core Team, 2008).

2 Data Description and Explorative Analysis

Twenty year (January 1986 - December 2005) of monthly abundances (number of individuals
per unit volume ) of nineteen copepod species, have been used for this work. This subset of the
original series (1970-todate) was chosen because it did not incorporate missing data. Mesozoo-
plankton has been collected by vertical hauls from bottom (18 m) to surface with a WP2 net, at a
200 m offshore station (C1) located at 45 42’ 03” N, 13 42’ 36” E in the Gulf of Trieste - North
Adriatic Sea (Italy), eastern Mediterranean (Conversi et al., 2009). The observed species, and
their abbreviations (which will be used in the following text) are listed in Table 1. As climatic
predictors three specific indices were taken into account:

• Sea Surface Temperature (SST) for the Gulf of Trieste region, derived from the long-
term meteorological station of CNR100 ISMAR-Trieste, located at at 453834N, 134514E
(Caterini et al., 2007).

• East Atlantic pattern (EA), downloaded from the web site http://www.cpc.noaa.gov,

• Northern Hemisphere Temperature (NHT), downloaded from the web site
http://www.cru.uea.ac.uk/.

While the first index is a local index, the sea surface temperature in the Gulf of Trieste, the
latter two are large scale indices. In particular, the Northern Hemisphere Temperature index has
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been associated to changes in copepod abundance and diversity in the North Sea (Beaugrand
et al., 2008). The Eastern Atlantic pattern is the second prominent mode of low-frequency
variability over the North Atlantic, after the North Atlantic Oscillation (NAO), and consists of a
north-south dipole of anomaly centers spanning the North Atlantic from east to west, which are
displaced southeastward relative to the NAO centers.

For all climate proxies we have used monthly time series from 1986 to 2005, in analogy with
biological time series.

Diaixis pygmoea (Dp) Calanus (CA)
Oithona (OI) Pseudocalanus elongatus (Pe)
Temora (TE) Temora longicornis (Tl)
Centropages typicus (Ct) Centropages (CE)
Acartia clausi (Ac) Calanus helgolandicus (Ch)
Temora stylifera (Ts) Paracalanus parvus (Pp)
Euterpina acutifrons (Ea) Oncaea (ON)
Centropages kroyeri (Ck) Corycaeus (CO)
Harpacticoida (HA) Ctenocalanus vanus (Cv)
Clausocalanus (CL)

Table 1: List of copepods species and taxa recorded the Gulf of Trieste time series.

In order to simplify our analysis and to reduce the dimension of the problem, we need to
select a few species which can be highly representative (in variability terms) of the whole con-
sidered plankton population. For this aim, we used the classical Principal Component Analysis
(PCA) (see e.g. Mardia et al. 1979) which provides us the eigenvectors listed in Tables 2-3.
From the PCA emerges that the variance explained by the first three principal components is

V ar(Comp.1) + V ar(Comp.2) + V ar(Comp.3)
V ar(

∑19
i=1 Comp.i)

= 0.86

where Comp.i indicates the i-th principal component. Then it is sufficient to choose, with a
suitable method, three biological variables to explain the 86% of the total variability. To discard
the variables we start dealing with the eigenvectors in Table 3 corresponding to the smallest
eigenvalue (in this case Comp.19) and eliminating the variable with the largest score in absolute
value (in this case Dp). The same operation is iterated considering the eigenvector related to the
next smallest eigenvalue and rejecting the variables with highest score. Ultimately, the above
procedure selects three plankton species: Acartia clausi, Oithona and Oncea. From an ecosys-
tem point of view, these three taxa are rather relevant in this area: Acartia clausi dominates the
Gulf of Trieste most of the year, comprising at some points >80% of the total biomass, but its
dominance has decreased in the last two decades, while the small copepods Oithona and Oncea
have become the next most abundant taxa for the selected period of time (Conversi et al., 2009)

Obviously both plankton and climate variables might be affected by seasonality. In order to
consider only the trend-cyclical component, we have then filtered linearly the data by means of
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a moving average operator of the type

Tt =
1

2a+ 1

a∑
t=−a

Xt, (2.1)

where Xt is the value of the abundance at time t. We applied Filter (2.1) to the plankton and to
the climate time series with a = 12. In other words we eliminated the seasonal component by
averaging over 25 contiguous terms for each value. Hence, we obtained a new dataset on which
we will work in the rest of the paper. It’s clear that in this way the data of the years 1986 and
2005 have been eliminated, in fact the first data available after the application of Operator (2.1)
correspond to January 1987 and last one correspond to December 2004.

We denote byX1 =“Oithona abundance”,X2 =“Acartia clausi abundance”,X3 =“Oncaea
abundance”, u1 =“SST”, u2 =“NHT”, u3 =“EA”, the trend-cycle component of the biological
and climate variables. It will be useful in the next section to consider the correlation matrices
for X = (X1, X2, X3) and u = (u1, u2, u3), respectively

ΣX =

 1.00 0.62 -0.06
0.62 1.00 0.09
-0.06 0.09 1.00

 (2.2)

Σu =

 1.00 -0.01 0.42
-0.01 1.00 0.68
0.42 0.68 1.00

 (2.3)

Looking at ΣX we observe that the variables X1 and X2 have a positive correlation, while X3

seems to be scarcely correlated with the other plankton species. From Σu it can be observed that
the variables u1, u3 and u2, u3 are positively correlated.
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3 SDE models and inference

In order to study the behaviour of the plankton species selected in the previous section, we
assume that the variables X1, X2, X3 (which evolve in continuous time) are solutions of a SDE.
In other words the underlying random model which explains the abundance of the plankton is a
diffusion process (see Karatzas and Shreve, 2001 for an extensive theoretical treatment of this
topic). We assume that the trend, that is the drift in the SDE framework, is defined by means
of a linear combination of the climatic variables and a possible interaction with one of the other
plankton species. Furthermore we will use a diffusion term with linear unknown parameters.
Therefore, by setting θk = (α1k, α2k, β) and u(t) = (u1(t), u2(t), u3(t)), we assume that
Xk(t), t > 0, k = 1, 2, 3, satisfies the following SDE system

dXk(t) = b(θk,u(t), Xk(t), Xj(t))dt+ σk

√
Xk(t)dWk(t) (3.1)

where the drift term is equal to

b(θk,u(t), Xk(t), Xj(t)) = Xk(t) [1 + α1ku1(t)u3(t) + α2ku2(t)u3(t) + βkXj(t)]

with k, j = 1, 2, 3, k 6= j and Wk is a standard Brownian motion, independent from Wj , k 6= j.
The parametric estimation problem in our case concerns a partially observed (at equidistant

discrete times) diffusion process. For an account of the statistical methods in this context the
reader can consult Sørensen (2004) and Iacus (2008). To estimate the parameters θk and σk we
use a pseudo-likelihood method based on the Euler scheme. The discretization reads

Xk(ti)−Xk(ti−1) = b(θk,u(ti−1), Xk(ti−1), Xj(ti−1))∆n + σk

√
Xk(ti−1)∆iWk

where Xk(ti),u(ti−1) represent the values of Xk and u(t) at time ti, ∆n = ti − ti−1 and
∆iWk = Wk(ti) − Wk(ti−1). The increments Xk(ti) − Xk(ti−1) are independent gaussian
random variables and the likelihood function of the sample becomes

Lk(ϑk) =
1∏n

i=1(2πσ2
kXk(ti)∆n)1/2

× exp

{
−

n∑
i=1

[Xk(ti)−Xk(ti−1)− b(θk,u(ti−1), Xk(ti−1), Xj(ti−1))∆n]2

2σ2
kXk(ti−1)∆n

}

where ϑk = (θk, σk). Now we define the approximated log-likelihood in the following way

lk(ϑk) = −1
2

n∑
i=1

[Xk(ti)−Xk(ti−1)− b(θk,u(ti−1), Xk(ti−1), Xj(ti−1))∆n]2

σ2
kXk(ti−1)∆n

−1
2

n∑
i=1

log(2πσ2
kXk(ti−1)∆n)

and the maximum likelihood estimator is

ϑ̂k = (θ̂k, σ̂k) = (α̂1k, α̂2k, β̂k, σ̂k) = arg max
ϑk

lk(ϑk) (3.2)
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From a numerical point of view, the choice of the mesh ∆n is crucial. In our case we are
considering monthly observations so that we fix ∆n = 1/12. We recall that the Euler method
works with small values of ∆n. For more information on numerical implementation of this
method we refer to Kloeden and Platen (1994) and Iacus (2008).

It’s important also to observe that to compute the values of Estimator (3.2), we will use a
numerical optimization method (”L-BFGS-B”) developed in Byrd et al. (1995). This method
allows box constraints, that is each variable can be given a lower and/or upper bound. The initial
value must satisfy the constraints. We treat separately the SDE’s corresponding to the three
species and use for our implementation the data from January 1987 to December 2003. This is
because, in the last section, we will use the observed data of the last year 2004 for a comparison
(and thus a validation) with the forecasting of the models.

3.1 Parametric estimation for X1

The correlation matrix ΣX suggests us to consider an interdependence betweenX1 andX2, then
from (3.1) for X1 the following model is assumed

dX1(t) = b(θ1,u(t), X1(t), X2(t))dt+ σ1

√
X1(t)dW1(t). (3.3)

We estimate the parameters of (3.3) by using Euler’s method with the optimization procedure
described above. The estimated value for β1 is β̂1 = 0. In other words the contribute of X2

to explain X1 seems to be negligible. For this reason we consider the following alternative
stochastic differential equations in which the interaction with X2 is absent:

• SDE.A1:

dX1(t) = X1(t) [1 + α11u1(t)u3(t) + α21u2(t)u3(t)] dt+ σ1

√
X1(t)dW1(t) (3.4)

• SDE.A2:

dX1(t) = X1(t) [1 + α11u1(t)u3(t)] dt+ σ1

√
X1(t)dW1(t) (3.5)

• SDE.A3:

dX1(t) = X1(t) [1 + α21u2(t)u3(t)] dt+ σ1

√
X1(t)dW1(t) (3.6)

and estimate their parameters applying again the same method. We observe that for the models
(3.5) and (3.6) it’s easy to define in closed-form the maximum likelihood estimator ϑ̂k, i.e.

α̂k1 =
∑n

i=1 uk(ti−1)u3(ti−1) [X1(ti)− 2X1(ti−1)]∑n
i=1(uk(ti−1)u3(ti−1))2X1(ti)

σ̂2
1 =

1
2n∆n

n∑
i=1

[X1(ti)−X1(ti−1)−X1(ti−1)(1 + α̂k1uk(ti−1)u3(ti−1))∆n]2

X1(ti−1)

with k = 1, 2. It’s clear that the models (3.5) and (3.6) are embedded in (3.4). The results of the
estimates have been listed in Table 4.
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3.2 Parametric estimation for X2

The same remarks raised for X1 hold also for X2. That is we can write

dX2(t) = b(θ2,u(t), X2(t), X1(t))dt+ σ2

√
X2(t)dW2(t), (3.7)

where the interaction with X1 emerges. The estimated value of β2 is β̂2 = 0, so that the
contribute of X1 in explaining X2 is negligible. Thus the models become

• SDE.B1:

dX2(t) = X2(t) [1 + α12u1(t)u3(t) + α22u2(t)u3(t)] dt+ σ2

√
X2(t)dW2(t) (3.8)

• SDE.B2:

dX2(t) = X2(t) [1 + α12u1(t)u3(t)] dt+ σ2

√
X2(t)dW2(t) (3.9)

• SDE.B3:

dX2(t) = X2(t) [1 + α22u2(t)u3(t)] dt+ σ2

√
X2(t)dW2(t) (3.10)

We observe that for the models (3.9) and (3.10) the estimator ϑ̂k is defined in closed form,
i.e.

α̂k2 =
∑n

i=1 uk(ti−1)u3(ti−1) [X2(ti)− 2X2(ti−1)]∑n
i=1(uk(ti−1)u3(ti−1))2X2(ti)

σ̂2
2 =

1
2n∆n

n∑
i=1

[X2(ti)−X2(ti−1)−X2(ti−1)(1 + α̂k2uk(ti−1)u3(ti−1))∆n]2

X2(ti−1)

with k = 1, 2. The results of the estimates are listed in Table 5.

3.3 Parametric estimation for X3

From the correlation matrix ΣX it emerges that the variable X3 is uncorrelated with X1 and X2;
therefore we don’t consider a possible interaction with the previous species. Thus in this case,
we consider directly X3 as solution of the following stochastic differential equations

• SDE.C1:

dX3(t) = X3(t) [1 + α13u1(t)u3(t) + α23u2(t)u3(t)] dt+ σ3

√
X3(t)dW3(t) (3.11)

• SDE.C2:

dX3(t) = X3(t) [1 + α13u1(t)u3(t)] dt+ σ3

√
X3(t)dW3(t) (3.12)

• SDE.C3:

dX3(t) = X3(t) [1 + α23u2(t)u3(t)] dt+ σ3

√
X3(t)dW3(t) (3.13)
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Analogously to X1 and X2, for (3.12) and (3.13) we have that

α̂k3 =
∑n

i=1 uk(ti−1)u3(ti−1) [X3(ti)− 2X3(ti−1)]∑n
i=1(uk(ti−1)u3(ti−1))2X3(ti)

σ̂2
3 =

1
2n∆n

n∑
i=1

[X3(ti)−X3(ti−1)−X3(ti−1)(1 + α̂k3uk(ti−1)u3(ti−1))∆n]2

X3(ti−1)

with k = 1, 2. Table 6 contains the estimates of the parameters of (3.11), (3.12) and (3.13).

4 Forecasting results

In order to compare and evaluate the performance of the SDE models introduced forX1, X2, X3

in the previous section, we perform a forecasting analysis by Monte Carlo simulations. In this
way we are also able to select the model which better predicts the real data. We want to forecast
the values of the biological time series during 2004. To simulate the sample paths of the process
we use the estimates (θ̂k, σ̂k) obtained in the previous Section and the Euler scheme as follows

Xk(ti) = Xk(ti−1) + b(θ̂k,u(ti−1), Xk(ti−1))∆n + σ̂k

√
Xk(ti−1)∆nZ (4.1)

where Z ∼ N(0, 1). So we fix the starting point at January 2004. Hence, we simulate 12
(one for each month) values of the random variable Z and calculate, via Expression (4.1), the
values of the variable Xk. For each variable Xk, we repeat these steps 10000 times for the three
proposed diffusion models. The results of our forecasting analysis are depicted in Figures 1-6.

In order to measure the discrepancy between the simulated values and the real data, we
introduce the following percentage index

Dk =
1
n

n∑
i=1

|Xk(ti)− X̄k(ti)|
Xk(ti)

∗ 100, k = 1, 2, 3, (4.2)

with X̄k(ti) = 1
10000

∑10000
j=1 Xj

k(ti), where Xj
k(ti) represents the predicted value for Xk(ti) by

the j-th simulation. The index Dk gives us the mean relative distance between the real data and
the average of the simulated values at time ti.

As one can see in Figure 1 for X1 (Oithona) the three sequences of average values X̄1(ti)
capture the global trend of the real time series during the year. However, the model that seems
to provide us the better forecasting is (3.6); in fact for SDE.A3 the discrepancy index reads

D1 = 4.27%

whilst for the models (3.4) and (3.5) we have respectively D1 = 15.18% and D1 = 7.74%. Fur-
thermore, if one observes the boxplots in Figure 2, the real values always fall into the confidence
interval containing the 50% of the empirical distributions emerging from SDE.A3. These con-
siderations show that, from a forecasting point of view, the best model is (3.6), which considers
only the combination of the NHT and EA indeces to explain the Oithona’s abundance.
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Similar considerations can be done with X2 (Acartia clausi). In fact, with respect to the
models SDE.B1 (D2 = 7.56%) and SDE.B2 (D2 = 13.2%), the prediction (Figure 3) emerging
from Model SDE.B3 is better, being in this case

D2 = 6.93%.

Furthermore, Figure 4 shows that the true observations (with the exception of May and
June) are between the first and third quartile of the empirical distributions emerging from (3.10).
Hence, X1 and X2 have the same relationships with the climatic variables.

For the last variable X3 (Oncea) we can conclude that the best model to make our forecast
is SDE.C1, being

D3 = 5.22%

whilst for the models SDE.C2 and SDE.C3 we have respectively D3 = 13.9% and D3 =
17.73%. Figure 6 shows that the true observations (with the exception of March and April) are
between the first and third quartile of the empirical distributions emerging from (3.11). There-
fore, in this case the trend component is defined by a linear combination between the couples
SST, EA and EA, NHT.

5 Conclusions

To conclude it is opportune to summarize the results obtained in this paper. We have analyzed
the copepod population in the Gulf of Trieste (Northern Adriatic Sea) and selected the following
representative representative taxa: Acartia clausi (the dominant species), Oithona, and Oncea
(taxa that have shown a large increment in numbers). We have focused our attention on the
dependence of the abundance of these taxa on climatic proxies and a possible interaction with
one of the other plankton species. We have evaluated the feasibility of using SDEs models to
forecast plankton abundance. Stochastic models have been used for addressing prey-predator
relationships (e.g., marine plankton predation by planktivorous fish, Mukhopadhyay and Bhat-
tacharyya, 2008), but climate-plankton relationships are usually investigated using deterministic
models, such as regression and correlations (e.g., Drinkwater et al., 2003, Beaugrand et al.,
2008). However, given the high stochasticity of climate processes, SDE models should pro-
vide better forecasting capabilities. Our results suggest that SDEs are a suitable mathematical
tool to study the evolution of the plankton abundance. We have estimated the parameters of
the introduced models and used the estimates to forecast one year. Specifically, the following
considerations hold:

• interactions among different species seem to be negligible, and the major predictors are
associated to climate variables. Specifically:

• Oithona: a linear combination of the indexes EA, NHT seems to explain the trend of this
species;

• Acartia clausi: the same conclusions for Oithona hold;
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• Oncea: in this case the best model combines in the drift an interaction between EA, NHT
and SST, EA.

The above results suggest that SDE’s models can provide a useful tool to forecast plank-
ton variations as functions of climate, which may be applied in developing climate-plankton
scenarios.
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Est. Std. Err.
α11 −0.20 0.04
α21 3.54 1.30
σ1 8.56 0.43

Est. Std. Err.
α11 −0.10 0.01
σ1 8.71 0.43

Est. Std. Err.
α21 −3.26 0.43
σ1 9.17 0.46

Table 4: Estimates of the parameters from left to right respectively of the models (3.4), (3.5) and
(3.6).

Est. Std. Err.
α12 −0.19 0.04
α22 3.34 1.28
σ2 9.68 0.48

Est. Std. Err.
α12 −0.10 0.01
σ2 9.84 0.49

Est. Std. Err.
α22 −3.26 0.36
σ2 10.34 0.51

Table 5: Estimates of the parameters from left to right respectively of the models (3.8), (3.9) and
(3.10).

Est. Std. Err.
α13 −0.26 0.05
α23 5.34 1.78
σ3 7.75 0.38

Est. Std. Err.
α13 −0.11 0.01
σ3 7.92 0.39

Est. Std. Err.
α23 −3.46 0.42
σ3 8.23 0.41

Table 6: Estimates of the parameters from left to right respectively of the models (3.11), (3.12)
and (3.13).
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Forecasting Oithona abundance
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Figure 1: Average simulated values X̄1 for every month on 10000 replications obtained by using
SDE.A1, SDE.A2, SDE.A3. The figure also shows the real data for Oithona abundance regarded
in the year.
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Figure 2: Boxplots for the simulated values derived by SDE.A3 model. The figure also shows
the real data.
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Forecasting Acartia clausi abundance
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Figure 3: Average simulated values X̄2 for every month on 10000 replications obtained by using
SDE.B1, SDE.B2, SDE.B3. The figure also shows the real data regarded in the year.
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Figure 4: Boxplots for the simulated values derived by SDE.B3 model. The figure also shows
the real data.

18



Forecasting Oncaea spp. abundance
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Figure 5: Average simulated values X̄3 for every month on 10000 replications obtained by using
SDE.C1, SDE.C2, SDE.C3. The figure also shows the real data regarded in the year.
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Figure 6: Boxplots for the simulated values derived by SDE.C1 model. The figure also shows
the real data.
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