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ABSTRACT. In this paper we propose a test procedure based on chi-square
divergence, suitable to testing hypotheses on the covariances of a measure
P, such as: [ fgdP = [ fdP [gdP, f and g belonging to given classes of
functions H and K. The procedure enters in the range of minimum divergence
statistics and relies on convexity and duality properties of the x2. We use the
statistic x2 defined by Broniatowski and Leorato (2004) suitably adapted to
the covariance constraints setting. Limiting properties of the test statistic are
studied, including convergence in distribution under contiguous alternatives.
The method is then applied to tests of independence between two random
variables. In this case a Chernoff-type large deviation result under Hy is also

proved.
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1. INTRODUCTION

Let Xq,...,X,, beii.d. random variables with values on a metric space X and
with unknown probability law P. Set B = B(X) the Borel o—algebra on X and
M the set of all signed measures on ‘B integrating to one.

Assume we are given a subset ) of 9t; and we are interested in testing the

hypothesis:
(1.1) Hy:PeQ \£ Hy: P &Q.

In typical situations, one of the most popular test procedures for this purpose is

based on y?—divergence estimation. We recall that
1.2 2(Q, P) = inf x*(Q,P
(1.2) X(@, P) = inf x*(Q, P)
and

2
dQ _ 0 i aha
(1.3) X2(Q,P) = I (dp ) dP if @ is abs. cont. w.r.to P

00 otherwise
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where 3—?, is the Radon-Nikodym derivative. The measure Q* € 2 which attains

the minimum in (1.2), provided it exists, is called the projection (or x?—projection)
of P onto ).

The estimation of x2, is typically based on refined partitions of the support X
and on the empirical measure P, associated to a random sample (X1,...,X,), i.e.
Po(z) = £ 3" 1(x,<4)(X;) (see fi. Cressie and Read (1984), Gyorfi and Vajda
(2001)...).

Broniatowski and Keziou (2003) proposed an estimation procedure, applied to a
parametric context, which avoids partitioning based on the estimation of ¢p—divergences
(which include x? as a particular case). See Liese and Vajda (1987) and references
therein for the definition and main properties of ¢—divergences.

Broniatowski and Leorato (2004) extended the method to non-parametric setting,
limitedly to x? estimation, defining the estimator x2.

In this paper we focus on the test paradigm (1.1), when €2 is defined by covariance

hypotheses, that is

(1.4) Q={Q €M : Q& = QEQC, Q§ <0,Q¢ <0, { €H, ( € K}

where H and K are two classes of functions and where Qf = [ fdQ.

We propose a test procedure obtained by adapting the statistic x2 mentioned
above to the covariance setting (1.4).

In particular, we exploit the following quadratic form representation for y?2
(Proposition 3.1 of Broniatowski and Leorato (2004)):

ar — Ppf1
(1.5) X2 = (a1 — Pufi,...,ax — Pufie) 2!
ar — Pufi
which holds if € is defined by a finite number of linear constraints, namely if
(16) Q:{Qeﬁﬁlefi:ai,izl,...,k},
for a given finite set of non-constant functions {fi,..., fx} and constants a;, i =
1 k.

yeeey

The matrix ¥, in (1.5) is the empirical covariance matrix of the random vector
(V(Pn = P)fi)1<i<h
An analogous representation can be proved for x2(£2, P):
a1 — Pfi
(1.7) x*> = (a1 — Pf1,...,a — Pfp) 7!
ar, — Pfy
In (1.7), the covariance matrix ¥ and the measure P are written in place of the

empirical counterparts.

Remark 1. When  is an arbitrary subset of 901, the definition of x?2 relies on

the dual representation of x?—divergence, which is a consequence of the convexity
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of the mapping Q — x2(Q.P) (equation (2.7) in [6]), but (1.7) does not hold any

more.

Remark 2. The reason why we assume 2 C 9; (although P is supposed to belong
to the set of probability measures) is that, roughly speaking, dealing with a subset
of non negative measures implies the introduction of inequality constraints in (1.6)
which cause the failure of identity (1.7) (and (1.5), consequently). However, since

X2(Q, P) = 0iff P € Q, there is no restriction in assuming Q C 9, for test purposes.

The class of tests (1.1) induced by sets of the form (1.4) includes many examples

which are relevant in statistics.

Examples.

o Test of independence. Let (X,Y) be two r.v.’s with values in [0,1]? (X = [0, 1]?).
We want to test whether X and Y are stochastically independent. It is enough to
take 2 as in (1.4) and

H={(z,y) = Lo(x), ue0,1)}
K= {(x,y) = 1(0,u](y)’ u € [Ov 1)}

In (1.8) both H and K are infinite dimensional. In these cases the estimator is

(1.8)

defined using an approach by sieves.

This simple example will be studied more in detail in Section 4. We will show in
particular, how the convergence results of the following sections can be improved
once ‘H and K are given.

e Test on correlation coefficient. Assume (X,Y) have values in X = R2. We are

interested in testing the simple hypothesis on the correlation coefficient px y:
Hy: pxy =0 wvs Hi:pxy #0.

The test paradigm can be clearly written in form (1.1), if Q is induced by the
functions H = {(z,y) — z} and K = {(z,y) — y}.

A composite version of the test can also be written. Let us suppose that Var(X) =
Var(Y) =1. Then, if Q = Uogagl Qg, with

Qaz{czesvn: /xyd@(:ay)=/xdczx(:v>/ydczy(y)+a}

we have that {Hy : P € Q@ wvs H; : P & Q} is equivalent to {Hy : pxy >
0 ws Hy:pxy <0}

o Affine symmetry. We consider now the hypothesis of affine symmetry between
two r.v.’s (namely simultaneous independence and homogeneity of marginal laws).
Assuming for simplicity X = [0, 1]%, we can write the test paradigm in form (1.1).
We can take H and K as in (1.8), while

Q = {Q €M, : Ql(O,u] (X)]-(O,v](y) = QX(U“)QY(U)7 (U,U) € [07 1]2
Qx(u) = Qy(u), uel0,1]}
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can be seen as the intersection of a subset induced by linear constraints (homogene-
ity) and another one induced by covariance constraints (independence)
O

We set F := F U {1} = H x K, that is the class of products of functions in
H:=HU{1} and K := K U {1}, where 1 is the function identically equal to 1.

Remark 3. Throughout the paper, we assume, without loss of generality, that F
is P—linearly independent, namely that none of its functions coincides, up to a
P—null subset of X, with a linear combination of the other functions in F, and this

clearly occurs only if the same property holds for H and K too.

The set (1.4) is not a linear set of measures, indeed it is not even convex, since
Q1,Q2 € Q2 does not imply a@q + (1 — a)Q2 € €, for any « € [0, 1]. Nevertheless,
it is still possible to get a quadratic form representation for x2, by decomposing £
into disjoint subsets.

To fix the ideas, we first consider the case when H and X have finite dimensions,
say h and k respectively.

Assume that the means P¢;, ¢ = 1,...,h and P, j = 1,...,k are known and
are given by the vectors r = {ry,...,rn}, s = {s1,..., Sk}

In this case (1.4) writes
(1.9)

Qr,s) ={Q € My : Q&(j =ris;j, Q& =1i, Q(j=sj,i=1,...,h, j=1,...,k}.

Q(r, s) has the same linear structure of (1.6) with class of function

(110) F= {51;5% .. 'agh,gh e 7<k,£1§1,£1<2, .. 'agiij .. 'agth} .

The dimension of F is m := h + k + hk.
For any r and s the existence of the projection of P to §)(r, s) follows from Liese’s

existence theorem (see Liese (1975)), while (1.5) permits us to write:

X2 (r,s) = x2(Qr, 5), P) = vZ (r,8)" ¥, vz (1, 5),

n —-n

where

Z£(£7§)T = {Pn§17T13"'7Pn€hirhapncl7517"'7P7IC]€75]€3
PG —ris1, .., Pa&iC — sy, oo, PrénCr — RSk}

Throughout the paper we assume that the set (1.4) can be written as
o= |J 2@rs
(r,5)€EO XOK

where O C R" and ©x C R* are compact sets.
Such limitations seem necessary to our approach, and can be viewed as assump-

tions on the P—means of functions in H and K.
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Clearly, if H and K are subsets of B, (i.e. the class of all bounded and measurable
functions), then we can define O3, = [~h,h]" and Ox = [k, k]*, with

h= sup sup|{(x)] k= sup sup|((x)|.
1<i<h 1<j<k =«

Therefore,

rs

(1.11) (O, P) =x* | JQ(r,s5), P | =inf x*(Qr, 5), P).

The above condition can be generalized to infinite dimensional H and K:

(Cl) For any HO == {fl,...,gh} g ‘H and ’Co = {Cla'-'7Ck} Q K:7
(P&, Pén) € Op = {(Q61, -+, Q8n) : Q € O},

(P<1a7PCk) S GKO = {(Q<177QCIC) . Q S Q}
O4, and Ok, are compact subsets of R” and R¥ and satisfy ||r||? < O(h),
for every r € Oy, and |s]|? < O(k), for every s € O, .

Then, we can rewrite the statistic x2 as follows

1.12 2 = inf 2 (.
o . (r.5) Oy xOx ™ (r,5)
- inf  vr(r,s)" 5, vy (r8).

(r,8)€On Ok

The paper is structured as follows. In Section 2 we study the finite dimensional
environment, prove consistency of the test statistic nx2 and find asymptotic distri-
bution under Hy.

Section 3 deals with infinite dimensional classes of functions and asymptotic
results analogous to those of the previous section are obtained.

For the proofs of consistency and weak convergence of the test statistic under
Hy, we will need the analogous results relative to the linear constraints case, for
which we refer to Broniatowski and Leorato (2004).

In Section 4 we present a simple application to a test of independence between
two r.v’s. Here refined partitioning is induced by the set indexed structure of the
classes of functions H and K. A large deviation result of the Chernoff type is also
proved.

The proofs of the main results are presented in the last Section.
Before closing this section let us define the vectors
v7(r,s)" = {P& —ri,...,P& —rp, PG —s1,..., PG, — sy,
P& G —risy, .o, PEGC — sy, oo, PERCE — Thsk )
and
7= (F) = {Vn(Py = P)é1, ... ,V/1(Py = P)Cy o, /(P = P)&iGj, -} -

It clearly holds vy = v/n (v (r,s) —v*(r,s)), for every (r,s) € Oy x Ok.
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2. FINITE DIMENSIONAL CLASSES OF FUNCTIONS

In this section we assume that  is given by (1.4) with H = {&;,...,&} and
K={¢,...,¢x}, h < ooand k < co and that Condition (C1) is satisfied. Moreover
we assume

(C2) H and K have P—square integrable envelope functions H and K respec-

tively.

Write x2(r, s) = x2(2(r, 5), P) and x? = x?(2, P) and write

(2.1) Xo(r,s) =vZ(r,s)" 7w (r, s)
and
(2.2) X, = _inf  Xi(r,s).

(r,8)€OH xOk

We define the vectors in Oy x O
T, S = ar inf 2(r,s),
(9, 80) g(’l‘,ﬁ)ee ‘o X (1, 5)

(rn.s,) = arg e con Xa(r, s)

T .S = ar inf X2 (r, s).
Cos) = ag il R

We recall also the definition of the algebraic norm of a matrix A which will be
. . . A
largely used in the following sections: [|A[ = sup,<; % = sup| =1 |Az| =
|Am| where |A,,| is, in absolute value, the largest eigenvalue of A and ||z| is the
Euclidean norm.
The first result, the proof of which is deferred to Section 5, concerns consistency

of (1.12) as an estimate of x2(Q, P).
Theorem 2.1. Let x?(Q2, P) < co. Then, if (C1) and (C2) hold, we have

lim |X,217X2(Q,P)| =0, P-—a.s.

n—oo

Note that (ry,s,) and (r,,,s,) both exist because x?((r,s)) and x2(r,s) are
continuous and differentiable functions of (r,s) on the compact and closed space
O3 x Ok C Rk Moreover, x2(r,s) is strictly convex in (r,s) because it is a
definite positive quadratic form and this implies that (rg,s,) is uniquely defined
while (r,,, s,,) must be read as any of the (possibly many) vectors that achieve the

infimum in (1.12). If P € Q, then there exists a (r*,s*) € O3 x Ok such that
P € Q(r*, s*) and it is straightforward to see that

(23) (£07§0) = (f*vﬁ*) = {Pgla B Pgh, PCla cey PCk} .
Proposition 2.1. Under (C1) and (C2) and if x*(Q, P) < oo, then

(2.4) lim |(r,,s,) — (rg,s0)|=0 P —a.s..
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Proof. The proof is an application of Corollary 3.2.3. in Van der Vaart and Wellner
(1996). Set M, (r,s) = —x2(r,s), M(r,s) = —x>(r,s) and © = Oy x O.

By the proof of Theorem 2.1, ||M,, — M||g — 0, while uniqueness of (rg,s,)
yields the condition M(ry,sy) > supye, xe,}—{a} M(r,s), for any open G C
O s.t. (rg,89) € G. O

In order to get the asymptotic distribution of x2 under the null hypothesis we first
study the limiting behaviour of the (h+ k)—dimensional vector {(r,,, s,,) — (rg, So) }-

’I’L’—’ﬂ

To do so, let us introduce, for every (r,s) € O xOx, the application 7 : O x O —
@]:2
(2.5)  nr,s) =Am,- s Mm} =71, Thy 815+ Sk T1IST, -+, TiSg5 o+ ThSE ),

where F is defined by (1.10) and ©# is closed and bounded in R™.
Denote by J = J(r, s) the Jacobian of 7, that is, J is the (h + k) X m—matrix:

I Opxg e8"  eps’ o0 eps”
(2.6) J(r,s) =
Opxn I vl rolp - TRl

where [j; is the unit k£ X k—matrix, e; is the j—th column vector of Iy.

Remark 4. Note that

It = ( (sl mush > |
5079 (14 [lro[[*) L)
where Jy = J(rg, s¢). This implies
Jods =1I|| = sup 2" (JoJy — 1)z
llzll=1

sup ZxQHSOHQ+Zyj||7“oH2+2Zm TOZZyjsOJ

2212 2 4
llzP=lz P+ y =t 57

< sup lzl?|lsoll* + ||QH ||£o||2 +2||£HH§OIIIIQHII£OH
lz|I2+]lyl?=1
(2.7) < (lIroll + lIsol)* < O(h + k) = O(m!/?)

by Condition (C1).

. R 7‘0, R
Analogously, choosing z; Talecl and y; = \/_H NE Jo can be bounded below

by
L 1, -, B
Jodo —1I|| = | llsoll? =+l +2
’” 0v0 H‘ H OH ;2HEOH2 H 0| g s |2 Z\/_HTOH 321\/_”80”
1
(2.8) =3 (Ioll® + llsoll® + 2llzolllsoll) = O(h + k).

We are now able to write 5 in terms of (r,s) and Jy, as is shown in the next

lemma, the proof of which is omitted.

Lemma 2.1. For every (r,s) € Oy X Ok,

T

(2.9) {n(r.s) —n(re.50)} ={(r.s) — (r0.50)} Jo+alr,s)",
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with

h+k
——
(210) g(z, §)T = {0, e ,O7 (Tl - 7‘071)(51 — 3071) ey (Ti - ’I"OJ')(S]' — 50J)7 .. }

It follows easily from (2.10), by writing a,, = a(r,,, s,,), that

nr2n

—

(2.11) lal* = Il = rol* 50 = sol” < 5 (2, ) = (0, 50) |-

For brevity’s sake, we will write, from now on, n = (T, 80,5 Ny = N(rg; 80)s
T, = Vni{(r,,s,) — (ry,80)} and finally v3 = v7(ry,s,). We remark that, if
P € Q, it follows from (2.3) that

ﬂo:{Pglw"apffnpé-lw"aPCk7P€1<1a"'7P€th}~

Then, if Hy holds, we can write, by Lemma 2.1

_ 2 _ _ _
o = (1, = 00) BN, — 1) = o, =) B, Ty, By
_ _ 2 _ _
+(n, —n)" (E' =27 (m, —n,) - %(ﬂn—ﬂo)T (Tt -2y

7ty (B =27,

(212) = n~! {12 S, — 20 JoS Ny +122*11n} + B, + O,

where
B, = nlzhox V(8w o) gy,
+n7112271/2 (EI/QZ,’LIEUQ _ I) 271/2ln

(2.13) —2n 71y R (21/22;121/2 - 1) SVl
and

c, = 2n71/212 Joﬁflgn + gZZflgn — anl/QQZEflln

+§Z;E_1/2 (21/225121/2 _ I) E—l/zan

(2.14) on /2 (zﬁ Jo — ln) »-1/2 (21/22;121/2 — 1) n-1/2,

Negligibility of B,, and C,, follows straightforwardly from (2.4), (2.11) taking

into account (5.6).
Theorem 2.2. Let P € Q). Then
(2.15) 1, = [JE7g ] STy, +op(L).

Proof. A more general result, from which (2.15) can be extracted, is proved in
Theorem 3.2. g

By using Theorem 2.2, (2.12) becomes:
mG = S, ST g (o )T Jen Ty, +op(1)

(2.16)

Vi TR Qo) T R Ry oY),



A CHI-SQUARE TYPE TEST FOR COVARIANCES 9

In (2.16) we have used nB,, = op(1) and nC,, = op(1), which also results from the

proof of Theorem 3.2.

Theorem 2.3. If P € Q then nx? converges weakly to a chi — square distributed
r.v., with degrees of freedom d = hk.

Proof. The matrix
(2.17) [-P=1-S"2)0 (Jox g5 ) " Jpn=/2

is idempotent with trace tr{I —P} = h+k+hk—tr{JoX"1J3 (JOE’lJOT)fl} = hk.

It is well known that, if y ~ N(0,1), then y” (I —P)y is a chi-square distributed
r.v. with degrees of freedom equal to tr{I — P}. Multidimensional CLT for v
completes the proof. O

3. INFINITE DIMENSIONAL CLASSES OF FUNCTIONS.

We now consider the case where H and K are infinite dimensional classes of
functions satisfying Conditions (C1) and (C2). In this case we can’t write the
quadratic form representation (1.7) as such. The method used to adapt x?2 to an
infinite number of covariance constraints is the same of Broniatowski and Leorato
(2004) and is based on the approximation of € by sieves.

We therefore consider two sequences of finite dimensional classes of functions
{Hu},>1 and {K,},,5, such that the following condition is fulfilled:

(C3) For every n, H,, and K,, have finite dimensions h,, and k,, respectively, with

lim,, o0 hy, = 00, lim,, ., k,, = 00, such that
Hn g Hn+1 g DR g Hv hm Hn = U'?LO:IHH g H7 Cl {U'ZO:lH"} = H’

KpCKni1 C...CK, lim Ky =02 K, =K, e {U,Kn} =K.

n—oo

Remark 5. Lower semicontinuity of the function x?(-, P) — R* (see Liese and Vajda
(1987)), implies that, if A,, is a sequence of subsets of My, converging monotonically
to A C My then

lim x2(An, P) = *(A, P).

n—o0

Furthermore, monotone convergence of the sequence F,, to F (Condition (C3))
corresponds to monotone convergence of the sequence of linear sets of measures, that
is, A\, ={QeM: Qf =0,f € F,,} decreases to A = {QeM: Qf =0,f € F}.
Indeed Conditions (C1) and (C3) imply also monotone convergence for the non-

increasing sequence {Q,},~ given by

(3.1) Q, ={Q eM: Q5 =QEQC, € Hp, CEKn}), n=>1,

for which it holds, Q,, D Q,4+1, for every n, and lim, o 2, = NS 12, = Q. This
guarantees that lim, . x*(Qn, P) = x?(Q, P), and implies also convergence in

variation of the respective projections (see also Teboulle and Vajda (1993)).
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Let us define, for every (r,s) € Oy, X Ok,

D (r,s) =4{Q : Q& =1is;, Q& =14, Q¢ =85, & € Ha, ¢ € Ky,
(3.2) i=1, hny G =1, k)

As in Section 2, we can write:

3.3 2 — inf 2(r,s
(3.3) Xo = (1 s)e@m, x0n, Xn(r:8)

with x2(r, s) = vi" (r,s)" £, 'vi" (r, 5), and

2 .2 _ : 2
(3.4) X(n) = X" (Qn, P) = o @125 cor, Xin) (r,s)

where X%n)(f,§) = v*(r,s)" % 1)an (r,s). The collection F,, indexing v#» and

(n
v in (3.3) and (3.4), is given by F,, = {H,, x K, } — {1}. In order to shorten the
notation, we write ¥ := ¥,y (A1 for its minimum eigenvalue) and v = v (Fn)
and we will often write h and k instead of h,, and k,, respectively.We also introduce,

in analogy with Section 2,

(rn,8,) = arginf(, g co, xox, Xa(r:s)
(3.5) (ro,89) = arg inf(, s)con xoK, X%n) (r,8)

(T, 5,) = arginf(, y)con o0, Xa(T,s).
Theorem 3.1. Let H and K be two P— Donsker classes of functions such that Con-
ditions (C1) and (C2) hold. Assume that there exist two approzimating sequences
for M and K, {Hn}, 5, and {Ky},>, respectively, satisfying Condition (C3), with

dimensions h, — oo and k, — oo, such that:
(3.6) lim A\ (h+k+ hE)n~Y2 =0.
Then, |X$L*X2| —-0 P—a.s.

Proof. Write [x2 — x?| <

Xn = Xiw| + ’X%n) - X2‘-

Condition (C3) and Remark 5 imply that it is enough to prove lim,,_, o,
0 P—a.s..

Equations (5.1), (5.2) and (5.3), together with (5.4) (see the Proof of Theorem
2.1 in Section 5) and the opposite inequality imply then the result, provided that

n~12m'/2 = op(1) and that

2‘_

lim H‘zmz;le/? - IH = lim mz}ﬂz—lz}/? - Im — 0.

The last two limits follow if lim,,_, Aflmn*1/2 = lim,, s /\f’;mn*I/Q =0 (and
these are sufficient n=1/2m'/2 = 0p(1)). Indeed, any of the two limits implies the
other one, therefore (3.6) is sufficient for consistency. The proof of the above claim
is deferred to Remark 7. g

The following results are generalizations to Proposition 2.1 and Theorem 2.2 to
the infinite dimensional setting and are necessary to prove the weak convergence

under Hy.
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A slight adjustment on the proof of Lemma 3.2.1 in van der Vaart and Wellner
(1996) leads to

Lemma 3.1. Let M, be a sequence of stochastic processes and M, a sequence
of deterministic functions indexed on the (sequence of) parametric spaces 6, and
continuous for every n.

Suppose that | My, —M,||le, = op(1) forn — oo and that M, (0) > supyeq M, (0)
for every G C ©,, such that 0}, & G.

Then each sequence 07 such that M, (6%) > Supg,, M, (0) — op(1) satisfies ||6F —
0| — 0 P—a.s..

Choosing M, = —x2, M, = 7X%n)’ 0O, = Oy, x Ok, and under the same
conditions of Theorem 3.1, we then get ||(r,,, s,) — (o, S0)|| = op(1).
The following theorem implies, as a particular case, result (2.15). Its proof is

postponed to the last section.

Theorem 3.2. Suppose that H and K are P—Donsker classes such that Condi-
tions (C1) and (C2) hold. Assume that there exist two sequences of finite classes
of functions {Hyp},~, and {K,}, -, which satisfy Condition (C3) for H and K
respectively. B B

Let moreover the sequences of dimensions h, — oo and k,, — oo satisfy:

5/4 5/4
(3.7) lim =2 = lim %n_l/2 =0 P—a.s.

Finally let A, = op(m!/?), ’}\T = Op(m) where A, is the largest eigenvalue of .
Then, if P € Q

(3.8) 1, =[BT STy, +op (m1/4) .
By replacing (3.8) into (2.12), we get, under Hy,

(39) m?2=+"SV2(I-P)S Y’y +nB, +nC, +op <HPE‘1/2LH2) .
LLN yields that nx2 = Op(hk). Then, in order to obtain useful asymptotic

results, we study the convergence in distribution of the standardized test statistic

2
"’f/“%lk. Theorem 3.3 below proves that, under the appropriate conditions over the

sequence of dimensions h and k, the test statistic converges weakly to a standard

normal r.v..

We first recall some useful definitions and results.

A class F is said to be pre-Gaussian if there exists a version w% (.) of P—Brownian
bridges uniformly continuous in ¢°° (F), with respect to the metric pp (f,g) =
(Varp|f — g|)1/2, where £ (F) is the Banach space of all functionals H : F — R
uniformly bounded and with norm ||H|| » = sup;c # |H (f)| . Let 0, be a decreasing

sequence such that for some a > 0 we have d,, = o(n™%).
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Definition 1. A class of functions F is Komlds-Major-Tusnddy with respect to P
and with rate 6, (i.e. F € KMT(d,,P)) iff it is pre-Gaussian and there exists a

version wy(+) of P—Brownian bridges such that, for every ¢ > 0:
(3.10) P {sup ’\/H(Pn = P)f —wn(f)] = 6a(t + blogn)} < ce P
fer

where the constants b, ¢ and [ depend on F only.

Remark 6. Dating back to Komlés et al. pioneering works of (1975), concerning
inequality (3.10) for the classical empirical process, there is a wide literature on
the subject. Most of the results concern generalizations to set indexed classes of
functions, such as spheres in R?, quadrants in R? or VC sets (see for instance Borisov
(1982) and Massart (1989)).

(From Borel-Cantelli Lemma and (3.10) if follows that
(3.11) sup [vn(f) — wn(f)| = Op (8alogn).
fer

We will use the fact that a K MT —class is also P—Donsker. With all this at

hand we are now able to prove the weak convergence result for x2

Theorem 3.3. Suppose that all conditions of Theorem 3.2 are fulfilled and that

(3.12) lim n~Y2m3 2\t =0 P—ae.

n—oo

Assume further that the class F defined by (1.10) is a KMT(5,; P) class, with

(3.13) lim 6, logn ml/z)\fl/Q =0 P—a.e
Then, if P € €,
2
nx; — hk
3.14 —2—— — N(0,1).
(3.14) e N0
Proof. The proof is deferred to Section 5. O

Remark 7 (Data dependent choice of the number of classes.). Conditions (3.6),
(3.7), (3.12) and (3.13) depend implicitly on the quantities P¢C, £ € H,( € K, due
to Aq.

We show here that \; can be replaced by A, 1, the minimum eigenvalue of the
empirical covariance matrix ¥, and, following the lines of Conti and Scanu (1998),

we give a method for choosing the number of classes through the sample.

We claim that, if (3.6) holds, with A; replaced by A, 1, then lim,_. ’\;\‘1’1 =
limy, oo Q—ll =1

In fact, by the inequalities

”i1|’|lf " (Z -,z < Hiﬂf " Yr — Hiﬂf ' Y,r < sup ' (2%,
z||=1 z||=1 z||=1 lz||=1

we have

(3.15) HiﬁlflmT (B=)7+ A1 <A1 < A1+ Hs1H1p (Y- %,
zi= z||=1
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Moreover
emn 2 inf ya(g)| < inf 2" (5= ,)e < I8 = S < Cmn~ 2 sup Jya(g)].
gEF? [lz||=1 geEF?

for some constants ¢ and C. That is (3.15) becomes
14+ Op (mn*l/QA;j) <MA I <140p (mn*l/z)\;}l) :

The above inequalities imply that, if mn_1/2)\;711 = op(1) then also (3.6) holds.
On the other hand, repeating the same reasoning with A; and A, ; exchanged,
we conclude that (3.6) implies lim,, mn’l/z)\;}l =0 and A}\—ll — 1.
It therefore follows that, if )\;’llm3/2n’1/2 — 0 then (3.12) holds and lim,,_, d,, log n)\;’ll/QmU2 =
0 implies (3.13).
From the application presented in the next section, it emerges that sometimes
condition (3.13) alone is sufficient to prove the consistency and convergence of the
test statistic under Hy, and that (3.13) yields

7,7 Nl i
lm AL = lm AL = lim 228 — fi =80 — 1,

N ; nnp;;

Write now
1 n=1
(3'16) mp = hpky, = Mp—1 Zf m € N, Qp(m) ¢ Vo
max{m € N: ¢(m) € V,,},
where

-1/2
@o(m) = min { A, 1m73/2,m71/2)\1/12g
’ n13 logn

and V,, = [(n 4 1)~Y/2+= n=1/2%2) for some 0 < ¢ < 1/2.
Then it is easy to see that m,, is the higher sequence of cells for which the required
conditions hold (see Conti and Scanu (1998)).

3.1. Distribution under contiguous alternatives. The asymptotic distribution
of a test statistic under contiguous alternatives is necessary to study efficiency of
the test procedure in terms of its Pitman ARE.

We consider the contiguous alternatives defined by the following model:
o —1/2
(3.17) p—np,=n""""¢

where p is the vector
p=1{P&, P&, ..., P&, PGy ..., PQy, .. PEC, o PERCEY
and 1, = n(rp,sp), with
(rp,sp) ={P&,..., P&, P(,..., P}
In (3.17) ¢ is the m—dimensional vector (with values depending on n)

§:{0"'70a€1,1a'~'7€’i,j7"'76h,k}7
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. . k h . .
with the constraints €;. = ijl €ij = i_1€ij =€.; =0, for every 4, j, that is

£ = {517-a-~-75-,k751,17~-~75i,j;-~-a5h,k}-

We want to examine the asymptotic distribution of x2 when (3.17) holds and
determine the sequence € which guarantees convergence of the standardized x2 to
a N(0,1) r.v..

The asymptotic distribution of y2, suitably normalized, can be obtained by de-
composing x?2 into a sum similar to (2.16) but much more complicated by the fact

that the term (1, — p) does not cancel out:

nxa(r,s) = n (ﬂ(L s) — QO)T ot (Q(L s) — QO) +2n (Q(L s)— QO)T I (ﬁo - ﬂp)

+ (Qo - ﬂp) = (ﬂo - ﬂp) —2Vn (ﬂ(ﬂ s) — ﬂO)T Zrtl(ln +e,)

T
=2V (1, = 1p) S0, + )
T

(3.18)  + (ln + gn) DI (ln + gn) )
In this setting, the following convergence result holds true, the proof of which is
sketched in Section 5.
Theorem 3.4. Suppose P satisfies (3.17), and that eX S~1/2(I — P)S~1/2¢, =
Op((hk)'/?), then under the same conditions of Theorem 3.3,

nxp— e |
V2hk

4. A TEST FOR INDEPENDENCE

(3.19) (0,1).

Assume  is the set of all probability measures on the product space X x ) =
[0,1] x [0,1].
Consider the classes of functions H and K

H={Lua(,y), we 0.1, (z.9) € 0,1}

(4.1)
K= {11(z,y), ve[0,1], (z,y) €[0,1%},

where

1 if0<z<u, 0<y<w

1 x, =1 Z, 1 x, =
u,v( Y) uJ( y) Lo(@,y) {0 otherwise

Then we can write

Q={QeM: Qfg—QyRQf =0,V feH, gek}.

Since the classes H and K are infinite, according to the procedure outlined in the
previous section, we need to build up their approximating sequences.
Forn>1, h=h, > 1, k =k, > 1, we choose the sets U,, = {u(ln),...7u2n)}

and V,, = {vgn),...,v,gn)}, with 0 < ugn) <...< uz(") <...< uén) E::_)l

0<U§n) < ... <'Uj(n) < ... <’l}l(€n) < 1:1]]({:21’ such that:

<l=u and

(4.2) lim h =00, lim k= oc;

n—oo n—oo
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0 < lim inf h(ugn) - ugﬁ)l) < lim sup h(uz(-n) - Ugﬂ) <00
n—o0 1<i<h n—00 1<i<h

. . (n) (n) i
0< fim  Inf ko —vjm) < lim 129k #

(4.3) w

i v§7i)1 ) < o0

and such that

Uy CUpi1 C... CUR U, = lim U, =U and c{U} = [0,1];
(4.4) Vi C Vi1 € ... CUX Yy = lim V, = Vand c{V} = [0, 1].

Then for the sequences

{Hntps1 = {Lusa(@,y), wi € Unk, 5,
{Kn}n21 = {11,vj (I,y), vj € Vn}n21

Condition (C3) holds.
Write F = H x K following (1.10), and

(4.5) Fo={Lu,0;, (wisv;) €Uy x Vy}

and finally define x2 by formula (3.3) using (4.5).
The class F is a KMT class for P with a rate &, = O(n~'/2logn) if P belongs
to Q (Tusnady (1977)).

2
Theorem 3.3 implies then that Xz="k

V2hk
(under the null hypothesis) if condition (3.8) and the two conditions below are

satisfied

is asymptotically normally distributed

In order to explicit the rate conditions over h and k, we need an estimate of the
eigenvalues A1 and \,,.
To this extent, we consider the classes of increment functions (indicator functions

of disjoint intervals):

AH,={1;. =141 —1y,_,1,i=1...,h+1}
(4.6) A, ={1.;=11,, — 11,4, ,, j=1...,k+1}

and define the class AF,, by AF, = AH, x AK, (Afn =AF, — {1})

In dealing with these classes of functions it is convenient to endow the vector
AF, with the ordering that associates, to the {(i —1)(k + 1) + j} —th position, the
function 1, ; =1;.1.;, 1 <i<h+1,1<j<k+1

Let AX be the covariance matrix of y (AF,). AX is easier than ¥ to deal with.

Moreover, it can be seen that the two matrices are linked by

(4.7) Y =M(AZ)M”
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where M is the block matrix

Mk+17k+1 O o 0
M1 o1 Mps1641 - 0
(4.8) M =
My k41 My .. M.

In the above formula Mj, 1, is the inferior triangular unit matrix of dimension & while
M, ;41 is obtained from My1 k41 by cutting off the (k + 1)—th row.

An analogous relation holds for v#= (r, s) and v3," (r, s):
(49)  vPn(r,s) =M v (Ar,As), i (r,s) = M 37 (Ar, As),

(Ar, As) being the vector of increments

{T17T2 —T1y.+esTh —Th—1,51y...,8Sk — sk—l}g
. h k
with Ei;rll(ri —Tric1) = Zjill(sj —sj-1) =1, 1o =150 =0.

The proof of (4.7) and (4.9) is only a matter of algebra and it is omitted.

Set p;j = P1;;, for every ¢ < h+1, j < k+ 1. Null hypothesis P € Q implies
then p; ; = p;.p. ;. Write also N; ; for the frequency observed in the (i,j)—th cell
and N; ., N.; for the marginal frequencies.

For AY and AY,, (its empirical counterpart) we have the following result:

Lemma 4.1. Let T be the diagonal matriz with {(i — 1)(k + 1) + j}—th diagonal
component equal to p; j, U the block matriz with (i,1)—th block equal to

for1<il<h

for1<i<h,l=h+1
{ pz‘,jlpz,jQ}jlgk’jQSkH for1<I<h,i=h+1
(VPP )y, cpguer Jori=h+1l1=h+1

{VPiaPriztj, jy<nm

i ) WGP <,

Write T,, and U,, for their corresponding empirical versions. Then

(4.10) AY =TY2([ - U)TY/?
and
(4.11) AY, =TY*(1-U,)TY2.

In particular, under Hy, (4.10) writes
(4.12) AY = TV2(1 — DV/?2UDY*)1'/?

where D is the diagonal block matriz with i —th block equal to D; = {p;. - Iy11} for
i <k, (Di1 = {pr+1,.-Ix}), while the (i,1)—th block of U is U = { /DiPia ),

Proof. We prove (4.12) only. The proof of the other identities can be obtained in a

similar way.
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Let u= (i1 —1)(k+1)4+j1,v= (i —1)(k+1) 4+ j2. Then (u,v)—th component
of AY is equal to:
(4.13)
pii(1 = pi; ifiy=ig=1, 1=J2=J
P1;, 5 1iy 5, — PL;, 5, Pliy 5, = { ! J) .
—Diy,-D-,j1 Dis,-D-.j, Otherwise
On the other hand, the (i1, i3)—th block of D'/2UD/? is mfﬁ”? Then
the (i1,49)—th block of TV/2(I — DY/2UDY/2)T1/? is:

(4.14) {/Pir. 05 (0ir.ia] — \/Pi, Din,/P-P1) \/pz‘m-p-,l}jl

where indexes j and [ vary from 1 to k + 1 or to k according to i; and i, be less

then or equal to h respectively and d; ; is the Kronecker delta function.

Hence, (j1,j2)—th component of (4.14) equals

\/pily'p',h\/pim‘pwh (62'1 i2Y71,72 \/pll -p. ]1\/]712 -p- J2)

which coincides with (4.13). O
From Lemma 4.1 we have

Corollary 4.1.

1
(4.15) AL =712 (1 + U> TV
Dh+1,k+1
1
4.16 ALt =112 (I + 4Un) T, '/
(4.16) Nhy1p41/n
Moreover,
(4.17) A 2 Phyrk+1 inf pyj
1<i<h
1< <k
(4.18) Am < sup Py
1<i<h
1<j<k

Proof. The proof relies on series expansion of ((I —U) = (372, U?) and on the

identity U? = (1 — pp41.4+1)U and is omitted since it can be derived by arguments

similar to those in the proof of Lemma 3.10 of Broniatowski and Leorato (2004).
(]

Corollary 4.1 can be used to write x2 in explicit form. It is in fact possible to

prove (see Lemma 3.14 in Broniatowski and Leorato (2004)) that

2
h+1k+1( Nij AnAsJ)

(4.19) => > v ;

=1 5=1 n
h+1 k+1 h+1 k+1 2
(pij — ArzASJ) (N; ;/n — Ar;As;)
X2\ (1, 5) E E and = inf g E .
(n) Pi Ar,As Pi.i
=1 j5=1 iJ =1 j=1 ©J
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In other words, x2 is the minimum modified chi-square test statistic under the
constraints Z?Ll Ar; = Zfill As; =1, Ar; >0,Vi, As; >0, Vj.

The sufficient conditions of Theorem 3.3 can be weakened once the class F is
given. In particular, for F indexed by cells in [0, 1]2, as in the present example,
condition (3.6) is stronger than (3.13) and is not necessary in order to attain the
convergence result for (nx2 — hk)/v/2hk. The following Theorem proves this asser-

tion.

Theorem 4.1. If P € Q and

—-1/2
—-1/2 2 : o 4 =

(4.20) n~/*(logn)“Vhk (ignﬁip” jgl%i1p"3> op(1),
then )

ny; — hk

———— — N(0,1).

V2hk 1)

Proof. The proof is postponed to Section 5. (]

Remark 8. The statistics x2 and X2 are closely related to X? and Y;2 proposed in
Conti and Scanu (1998) for testing the independence hypothesis for lattice distri-

butions. However it is easy to see that conditions (5) of Conti and Scanu i.e.

n’ . n? .
mi min i — 00

VhtLicignn P T e g P
for some 0 < § < 1/4, imply (4.20).

4.1. Large deviations under the null. We now show a large deviation result of
the Chernoff-type under the null hypothesis, for the test statistic defined by (4.19).
The main instrument used for the proof is Lemma 1 in Beirlant et al. (2001).

We recall the definition of the Kullback-Leibler divergence for discrete distributions
Q = (Q17" 7Qm) and P = (pla"'vpm):

1@ P) = glog (g-) :
i=1 v

The result of Theorem 4.2 below is indeed the same of Theorem 5 in Beirlant et
al. (2001). However, we propose an alternative proof which avoids the use of the

doubtful lower bound for inf(q.y2(@,p)><} I(Q, P) applied therein.

Theorem 4.2. Let P = (#77#) be the uniform distribution and P, =
(%7 ol %) the empirical measure, restricted to the sequence of partitions A,, =

(Agn), ce A%L}L) of the support X,

o (- )
Xo = Xa(PPa) = ) |~
=1 n
Then, if mTi logn — 0 we have that
m

(4.21) lim —"log Pr{X2 >¢c} =—1

n—oo N
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for alle > 0.
Proof. The proof is deferred to next Section. O

As a corollary of Theorem 4.2 we first derive a large deviation result for the

statistic

Ni,j 2

1N¢yj>0a

(4.22) Z (

i U/”

which corresponds to the case where the marginals of P are known (and cells are

arranged in order to have uniformity).

Corollary 4.2. Assume W logn — 0. Then

(4.23) lim Tnfn

n—oo

log Pr {f(i > a} =-1
for all e > 0.

Proof. Tt is enough to repeat the proof of Theorem 4.2 with h,k,, instead of m,,. In

this case Qo = (q1,1,G1,25 - - - s Gy k) = (07 hnkln—l’ ol h,Lkl,ﬁ ) and Q* is similarly
defined from (5.28). O

We can finally write down the Chernoff-type result for y2:

Corollary 4.3. Let h"nk" logn — 0. Then

Bk )?
(4.24) lim (Pnkin)” log Pr{x2 >¢c} =—1
n—oo n

for all e > 0.

Proof. We consider the set

2
r— Q:infzi(nsj 4ui)_ > .

Then, using again Lemma 1 in Beirlant et al. (2001) and the condition W logn —
0, we have

. hpkn
(4.25) lim log Pr{x2 >¢c} =— lim inf I(Q,P).

n— 00 n—oo Qer

For the lower bound of (4.25) we take the distribution Q° defined above. For the

upper bound, we consider the set

2
I,=4Q: Z( q”) >ep DI

qi,j o

Then the result follows by Corollary 4.2. |
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5. PROOFs
Proof of Theorem 2.1. We have
(5.1) 0 < i —x°[ < [xa = Xa| + x5 — X7
We note that

Xo— X0 < Xolre,so) — X7 (o, 50)

= 0 P (1, 50) + 7 (10, 50) T,

< op /2 ‘ ’YTE_l/zHQ

v (10,50) S| | 272, || 407

(5.2) = Op (n_l/zx/?ml/z + n_lm)

where [|z]|* = S, @2 is the Euclidean norm.

In the last step we have applied Chebyshev inequality to the r.v. 122_11717
which, by CLT, converges to a chi-squared r.v. with m = [(h+1)(k+1)—1] degrees
of freedom.

Since ¥ is definite positive the above inequality implies:
0<% <32 (1+0p (0 2m!2 () 7)) + 0p(n”'m).

For the opposite inequality we have:

IN

eI PTANS |

Op (n_l/gy/yimlﬂ + n_1m> =op(1).

By putting together (5.2) and (5.3) we obtain |Y2 — X2| =op(1).

R

Z: 271/2H Lt ‘

x> —X

(5.3)

It remains to prove that the first term in (5.1) is negligible.
It then follows that

X2 —Xo < Xa(Tn3,) — X(Tn,5,) = V5 (T0,5,)" (S, =27 7 (T,,5,)
= V(T SR (B S ) T (5, 5,)

(5.4) < X

$l/2p-inl/2 IH‘

¥, is positive semi-definite and this allows us to write, by (5.4), that 0 < y2 <
=2 1/25—13v1/2
X (L+Op ([[21/2551542 — 1]))).
For the opposite inequality, we easily get Y2 — x2 < x2 ”
It follows that, if both norms |||Zl/225121/2 — I|” and H‘Z}/ZEAE}/Q — I‘H are

op(1), then we are done.

nl/2y-151/2 _ IH)

By some algebraic manipulations and using Taylor expansion for f(z) = (1+z)~*

we have

(5.5) yol=yol/2

n

I+ i (2—1/2(2 - zn)z—lﬂ)h} $-12,
h=1
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and
> h 2h
e B e o
m
<1 | sw |(Pn — P)ECT| + 2 sup |(Py — P)&¢| VPH?PK? | (14 0p(1))
&R Gk
(5.6)

where A\; < o < ... < )\, are the eigenvalues of ¥ and where we have set g = 1 and
¢o = 1. The right hand side of (5.6) converges to zero P—a.s. from multidimensional
LLN and by Condition (C2).

By repeating the same arguments used above, ¥, and ¥ exchanged, one can

easily obtain
(5.7) H‘z;/?z—lz}/? - IW

SmﬁiGWK&—PE%ﬂ+%THUW%wK&—PmQOH
1) 0,J
by LLN, where Ay, denotes the smallest eigenvalue of X,,. O

Proof of Theorem 3.2. By (2.17), tr(P) = rank(P) = h + k and JoX~V/?P =
J()Z_l/Q

Define the sequence (7 € Oy, X Ok, such that

T ’I'L)

(58)  V{(Tn.5,) — (rg.50)} JoSTV2 =%, 0082 =4 n72P.

We have already noticed that ‘ i JoX Ny T
It holds also |, JoX ™ Jg
n_llz O’Elln and using (2.12), we have

—1/2PZ_1/21n =Op(h+

n ’

Op(h+k). In fact, since (under Hp) x2(rg, 59) =

n|7

0 < X%(Eméo) X (T 8,)
= —n! (zn JOE_lJO T, — 27T, JOE_lln)
— (Ba—n7lyl w2 (2202 - ) B
= —n ! (mn JoX T g T, — 20, J08 T g £y)
—(Ba—n7yl w2 (B2 - ) £ ) - G,

1)—%

with B,, and C,, given by (2.13) and (2.14).
Complete the square and move it left hand side to get
—1 ~ \T —1 ~
n (In - In) JoX JO ( Tn — In)
(5.9)< n 7" Jo2 L IT F, —Cp— (Bn—rr1 T2 (21/22 1y1/2 _ I) 2*1/2171) .
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We can bound
’Bn _ Tflzi n-1/2 (21/22;121/2 _ I) 271/2171
_ ‘nflz;: Jon1/2 <21/227§121/2 _ I) 271/2(]51"

—2n*11TJ0271/2 (21/227121/2 . ) 1/21

g R R LR | R )] Bl

2
7 don2|)) )

(5.10) < Op (m5/4n—1/2)\;1) n—10p ((Hzﬁ JoE—1/2H + ‘

and

C,| = ‘271_1/2 T JoSla, +al v a, — 2n /227 5!

n

(5.11) +op ( —1/2 TJO 1J0Tgn + g: E_lgn — 2n_1/2g£ E_lln>

To explain the last step in (5.10) we remark that

=

= H‘

—n

[

~TJ - 1/2H

(by LLN) = Op (m1/4) ‘

|
and thus, using (5.6) and P—Donsker property for F,
P o et | e

< on(mt) 200577 ) 0 ()

P WH +2HT Jos— WH‘

It is not difficult to deduce, by (2.10) and (2.11), that n ||a, || < Op (||12 .]OHZ). In
fact

. 2
[ Jodo | n[(l + sl 1z = zolI* + (1 + llzol*)llsn — sol®

+2) r0,i(ra = 704) ) 505(5n,5 — So,j)}
i J

2
n (|, — roll? + s, — 0lI”) +n (Irolllls, — soll + llsollllz,, — roll)

Y

Y

2n||z,, — rolllls, — soll

Then we can bound (5.11) by

|Cn‘ = OP( 1/2T )
< 0p (i ol o 57 )
< Op(n (KT )n*”ml/%;”2|||z|||)

(5.12) =

Q

P (7 (T 2T 7)) Op (7 2m 2N
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Note that in (5.12) we have used the inequality:

2

||1£ J0|| IZ JOJOTIn x” JOJOTx y'y 2" Yx

5 = =% — T <sup —; — 7 = SUp 7 =sup ——.
||Z£J0271/2H ThJoX )y T, « v JoX g y Yy Xy : T'T

By inserting (5.10) and (5.12) into (5.9) we obtain

2
N
X (1 +Op (m5/4)\1_1n71/2> +Op <n71/2)\m>\1—1/2m1/2))
< n_l (In - in)T JOE_IJOT (zn - in) (1 + OP(l))

(5.13) < n 7 gy 'E, =Op (n_1m1/2>

where negligibility of the two Op(+) terms above follows by (3.7) and by n*1/2)\m)\1_1/2m

op (M3 *ATIn=1/2),

Write now

0 > n1/2 (Xn( Tn) n) Xn( Tn) n))
(514%: n71/2 (In - in) JOE?lJO (In - in) + nl/z(Bn - Bn) + nl/Z(Cn - Cn)?

where B, and C, are obtained from (2.13) and (2.14) replacing (r,,,s,) with

(T 85)-

By the same reasoning made above we obtain

‘Bn _B,
% IZ Jo (21/227121/2_1)2 1/2J()Tln—2lz Jo (21/227121/2_1)E

—1/2

. —1/2

—n

1/2 —11/2

—iﬁJoE_W(EI DN )E‘ PIrE 425 Jos (2 NS I)E
< OP (m5/4n_1/2)\1 ) OP (m1/2n—1>

—n|

and |Gy —Co| < |Cal+1Cul Sop (2 (h o= 45 2,2, JoE 1] £,)) =op (n~Im1/?).
By the two bounds above we get

SVt =S V2T 4 op (m1/4> —PS Y%y 4op (Hz—l/QJOTIn

).

which yields the result. O

Proof of Theorem 3.3. Let w® be a version of the P—Brownian bridge satisfying

the strong invariance principle on F and w9 its restriction to F,.

1/2 _
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Then we can write

HXEL —hk B lnTE—l/Q[I _ 2—1/2J0T (JOE_l‘]OT)_1J02_1/2]2_1/21n _ hk
V2hk V2hk
L ButCa
V2hk
WS Y2(I - P)S 200 — hk
V2hk

—2(2hk) Pl STV AT - PR (W, — )

+(2hk)~Y/? (w0, — ln)TZ_l/Q(I —P) V2 (w0 — )
+n(2hk)2(B, + C,)
V2hk

+ D, + E, +n(2hk)"Y*(B,, + C,)

where Z; ~ N(0,1). Thus by CLT the first term converges weakly to the desired
limit. It remains then to prove that the other terms are negligible.
By (3.8) and (5.10), we write

n(hk)~'/2B,

—1/2_ Ty—1/2 1/2g—1v1/2 —1/2
(hk) /4" 5 /(IfP)(Z/ZnE/ 71)(17P)2 /

ZTL
on ([ 0 (73 - )
Op (m3/2)\1_1n71/2) =op(1),

while (5.11) and (5.13) yield nC, (hk)™Y/2 = op (mA; 'n=1/2).
The KMT property implies E,, = op(D,,) and we have
D, <

2(2hk)71/2\/g%2*1/2(1 —P)x-1/29,
xyfluh 7,212~ P)S 12wk - 7, )
2(2hk) /20 ((hk)1/2> ’

IN

(5.16)

<

o, | e -

m2 sup [W3(f) — v ()] AL 20R(1)
fer

which follows by ||I — P|| = 1 and by ’

Wy — ’lnH < m'/? SUPfer ‘wg(f) - 'Yn(f)’
O
Proof of Theorem 3.4 (sketch). We deduce, by (2.9) and (2.10), the relation

(ﬂp _QQ>T = {(ﬁPa§P) - (ﬂoaﬁo)}T Jo+ap.
Set 7p = /n{(rp,sp) — (rg,s0)}-

By (3.18) we can then write, after some calculations,
nx = (T —zp) SETNg (T, -1

3

(5.17)

P) =2z, —zp) B (1, +20)
+2 (L + gn) Jox ™1y (jn + §n) +nBpp+nCyp.
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Similarly to (5.10) and (5.11), we have
nBnp = (r,— IP)T Jos1/2 (21/225121/2 _ I) n-1/2 (r, —Tp)
~2(z, —zp) SX V(B2 1) 2 (4, +e,)

T
+ <1n +§n) »o1/2 (21/22;121/2 - 1) »o1/2 (L + §n)
and

nC'VhP = (gn - QP)T 271 (én - QP) -2 (gn - QP)T 271 (Zn - ZP)

T _ T —
+or((a, —2p)" T (@, —2p) ~2(2, —25) =7 (z,, — 2p))
(where the second term is op(-), provided that H|21/2E;121/2 —I|| = op(1)).
Set (7,,,3,,) a (h + k)—th dimensional vector satisfying

~ -~ _ -1 _
T —1p=Vn{(Fn,5,) — (rp,sp)} = (o 'y)  JoE (1n +§n) :
Then, from (5.17) we get,

0 < Va{xi(F,.5,) - X2}

~{@w ) (=) — (0, +2) =T (oE )

x{ (=) (@0 — 1p) = BTN, +20) }

(518) +N(Bn,p — Bmp) + n(én,p — Cmp)

Repeating the same reasoning exploited in the proof of Theorem 3.2 it is easy to
find

O (|zn Jo=7 g 7,|) = O (|70 Jo= 7" g 7 ) -
By taking the derivative of

(r,s) = (Q(z, s) — QP)T »t (Q(ﬂ, s) —ﬂp) —2n "2 9t (g(ﬁ, s) — QP) +en 27,

with respect to (r, s), we see that the infimum is achieved in (r,, s,) if and only if

_1 ;7\ 1 _
Tp = Vi{(p.sp) = (ro:50)} = (HE 5 )" ST (e, +2p).
It thus follows that 7, JoX~1Jy 7, = Op ((hk)l/z)-

Inequalities analogous to (5.11) for C,, p and C,, p allow to conclude that those
terms are negligible, using the fact that [|ap|| = Op (n=1/2||z5Jo[?).

Negligibility of n |B,, p — Bn, p‘ can be also derived adapting the arguments used
in Theorem 3.2.

We can then write

(T, —zp) = (&, —Tp) +op (m1/4n_1/2) .
The above display yields

o= (3, 4e) SRS (4 2).

Write p(g) and o(g) for the mean and variance of nx?2 conditionally to (3.17):

we) = kh+e" 27 VHI - P)yn~1/2%;
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o(g) = 2hk.

In order to prove (3.19), as was done in the Proof of Theorem 3.3, we now split

the quantity at left hand side of (3.19) into several components:

nx2 — u(e) (g% +e—uf +1n)T DRATES SN (g% +e—uwh+ jn) — u(e)
Vahk V2hk
+n(hk)™Y% (Bp.p + Cy.p)
(Wo +¢e) STV —P)S Y2 (w9 + &) — hk — " Y2(I - P)2 /%
V2hk

+n(hk) "% (By.p + Cn.p)
DB 2(£% i Zn)T 271/2(1 _ P)E’1/2§
V2hk
where D,, and E,, coincide with those in (5.15). It follows by the same arguments
used in Theorem 3.3 that the term (hk)~'/2 (B, p + C,.p) is op(n~'), as well as
the terms in the last line of the above display, because of (3.13) and g, £~ /2(I —
P)X 12, = Op((hk)'/?) and also because of KMT property for F.

The first term is distributed according to a non-central chi-square law, with

degrees of freedom equal to hk, and noncentrality coefficient equal to ¢” X~/ 21—
P)X~1/2¢. Then, using standard CLT we get (3.19). O

Proof of Theorem 4.1. We have
nx2 — hk B nx2 — hk
V2hk v2hk

It is enough to show that the first term in right hand side of (5.19) converges

(5.19) + (2hEk) V20 (2 —X2).

weakly to a standard normal r.v. while the second term is negligible.

—2
) —hk
First we prove convergence of "Xa—"%
b g V2hk

By X2 = inf, s v (r,5)" X "'vn" (r,s) and following the lines of the proof of

Theorem 3.2, we can write:

0 > \/E(Yi(fmgn)_ygz(fmén))
n V2T, ~7,) STV (T, — £,) + 020,

n
where Cy, = 20127 JoX '3, —2n71/?7' %73, +3,57'3,, 3

T, = \/ﬁ((fnagn) - (KOaQO))'

Observe that

ICall < Op (= 2m!2A7 200 ) O (07170 o271 7,)
and that

—-1/2
n—1/2m1/2>\1—1/2>\m S n71/2m1/2 <ph+1,k+1 1211pr1,‘7> .

It then follows that 7, = 7,, + op (||T,,||), which, by performing a decomposition

analogous to (2.12) for X2 yields:
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(5.20) nxz = 122_1/2(1 - P)E_l/an +nC, +op (ml/g) .
Then, following the notation of (5.15), we write

an —hk 4

S

Condition (4.20) implies that D,, and E, are op(1), as shown in (5.16), while

the first term converges to a standard normal r.v. by CLT.

(5.21) + Dy + E, +m™ Y200, + op(1).

AstonC,,, we have already pointed out that nC',, = op (ml/z) = op (ff; JOE’lJOT T,

We now have to prove that the last term in (5.19) is negligible.

To this aim, we exploit representations (4.19) and (4) to obtain the following

bounds:
n . n _ _9 ., _
\/ﬁ (X721 - X’?L) S \/ﬁ (X?z(£n»§n) - X?L(En7§n))
h+1k+1 2 n 1
— \/ Z Z < - AFnﬂ'Agn,j) (N— — >
i=1 j=1 1,3 pi’j
(5.22) < "X” Vhk max <ﬂ _ 1) :
i,7 Nz,]
n . n . .
T (2 —x2) = Tt (rg}ﬁn Xa(r, 8) — min X (1 §))
n
> min (x2(r, s) — X2(r, 5))
/h 7.8 n n
(5.23) > —\/ m( DPij _ 1) 2.
Ni,

Taking into account that ny2 = Op(hk) and inequalities (5.22) and (5.23), it
follows that if we prove v hk max; ; ‘Nf;,]/n — 1‘ — 0, then we are done.
We use inequality 10.3.2 p.415 in Shorack and Wellner (1986): for every i, j,

N
(5.24) P {—] > x} <exp{-np;;jh(z)}, x>1
npi,;
i,j 1
(5.25) P{CLVP—WJ 21:} Sexp{npivjh (;)} z>1

with h(z) = xlogx — 2+ 1 > 0 for every @ # 1. The steps are the same as in
the proof of Theorem 3.15 of Broniatowski and Leorato (2004) and therefore are
omitted.

O

Proof of Theorem 4.2. The proof follows the lines of Theorem 3 in Beirlant et
al. (2001). Define the set I' = {Q : x2(P, Q) > €} and let £, be the set of measures

).
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having support on (Ag"), e ,Ag,?l). By using Lemma 1 in Beirlant et al. (2001),

we can write
2
m m
“—ZlogP 2 > inf 1 P)| <21 1
" log Pr{x3 2 ¢} +ma nf, 1(Q.P)| < "2 log(n + 1)

which can be rewritten as

m
lim ““logPr{x2>c} = — lim inf I(Q,P
nl—{go - og T{Xn = 6} nLH;erllgmﬂn (@, P)

n—oo Qel’

For the upper bound of (5.26) we consider the distribution (24) in Beirlant et al.
(2001):

my, — 1

1 1
2 =
(5:27) Q= (0 )
which yields (see Beirlant et al. (2001))
L inf 1(Q, P) < mnI(Qo, P) — 1.
mn Inf 1(Q, P) < mnI(Qo, P) —

For the converse inequality, we consider the distribution

(5.28) @:<c Loe 1_0),

"m, — 1 m, — 1

24+emp—4/e2m2 +4em, —4e

where c is such that x?(P, Q) = ¢, that means, ¢ = S (Tre)
Let Q* = arginfger I(Q, P) and assume that Q* = (g1, ...,¢m,, ), with 0 < ¢; <
¢2,< ... < ¢, . We want to prove that Q* = Q.
(a) g1 > 0. This part follows without modifications from part (a) of Theorem 3 in
Beirlant et al. (2001).
(b) There exist 1 <r, <mysuchthatqgy =...=¢,, < ¢r,+1 =...¢m, . Hypothesis

(b) fails if either ¢ = ... = ¢y, = mL or if there exist 1 < r,, < s,, < m,, for which
@1 < qr, < qs,. The first case gives x?(P,Q*) = 0, then Q* ¢ I'. To show that
the second case also leads to a contradiction, we proceed as follows: suppose, for
simplicity ¢1 < g2 < g3 (e.g. 7, = 2 and s, = 3). We now build up a new
distribution Q coinciding with Q* except for

Gi=q —0, Go=qa+0t, §gz=gq3—0(t—1),

where § and ¢ (0 < 6 < q1, 0 <t <1+ g—f) are chosen such that y2(P,Q*) =
X2(P, Q) This means that

2 2 2
42 935 — 41
5.29 t=—=% + o(1
(5.29) @ 93 — @5 M
for § — 0. Then
I(Q,P) = (q1—0)log((q1 —6)mn) + (g2 + 6t) log((g2 + 6t)my,)

+(g3 — d(t — 1)) log((gz — 6(t — 1))my,)
= I(Q",P)+0(tloggs —logq: — (t — 1) loggsz) + o(9).



A CHI-SQUARE TYPE TEST FOR COVARIANCES 29

Using (5.29) we get

I(Q,P) - I(Q*,P) = 0 —ng%_qf(lo 2 —logqs) — (logq? —logq3) ) + o(4)
) ) AT Y g d> g q3 2 q1 g q3
s 1
= L (1 —2)logy — z(1 —y)1
5 777 (001 = ) ogy — a1 — ) o) + o(0)

with 0 <z = % <y= % < 1. Therefore, since the function 1% log x is decreasing
for x in [0, 1] we have I(Q, P) — I(Q*, P) < 0 for ¢ small enough, which contradicts
the hypothesis that Q* reaches the infimum.

(¢) r, =1 (for all but finitely many n). From point (b) we have that

0" — @ a l-q l—q
) iy =y My, — 1y,
and that
. q1my, 1 —qi)m,
(5.30) 1(Q",P) = qulog & 4 (1= 1) log Lm0 f)r

while for @, with ¢; = ¢, we have

(1—q1)m, )

1@, P) = qulog gimy + (1 = 1) log ~———

Some easy calculations permit us to write (5.30) as

" . — % Tn—]. 1_q1mn
(631)  HQ,P)=1Q.P)+1Q" Q)+~ qllog<1+7ql(mn_1)>'

Therefore it is enough to take g; < mL to conclude

1(Q",P) - 1(Q,P) > I1(Q",Q) > 0.

Indeed, since

_ 2+4em, —\/EPm2 +demy —de _ 2+ emy, —\/E2mE 1 _ 1
N 2m, (1 +¢) = 2mu(1+e) mp(l4e) my

we are able to say that the distribution (5.27) must be the one which attains the
infimum in (5.26)
(d) It remains now to prove that m,I(Q, P) — 1. We use that fact that the function

(1 B q)mn
I(q) =ql n+ (1 —¢q)log ———
(¢) = qlog gmy + (1 — q) log p—
is monotone decreasing for ¢ € (0, min) Since ¢ € [0, min] and, by using the following
upper and lower bounds for the function f(z) = +/1+ z (« near 0):
r oz T
1+ -2 < <1+:Z
ty - sf@st+g,
when x = 4(?7;2 1)7 we get
2+ em, —emy, (1 + 4(;;1;;;1)) 1
5.32 > - =
(5:32) €= 2my (1 +¢) m2(l+e)’
and
14 2(my, —1)2 3
(5.33) | 1o 120 = D7/ (mye)




30

S. LEORATO

Putting (5.32) and (5.33) into I(Q, P), we finally have

_ 1 1 1+0(:-)
I P) > I - Mn’
R S R T S Rl T e
m 1+ 2(mn;1)
1 n _ Em”
08 m,—1 m2(l+e¢)

_ %+<1+o<i>)log<l+$+o(min>>

= () G e () )

which entails

My, le%fr I(Q,P) =m,I(Q,P) >1+o(1).
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