Locating Median Paths on Connected Outerplanar Graphs

I. Lari* F. Ricca* A. Scozzari | R. I. Becker?

Abstract

During the last two decades, there has been a growing interest in locating extensive facil-
ities, such as paths, on networks. In this paper we study the median path problem without
restrictions on its length on the class of connected outerplanar graphs with equal weights
assigned to the edges and nonnegative weights associated to the vertices. We provide a O(kn)
time algorithm, where n is the number of vertices of the graph G and k is the number of
blocks in GG. As a byproduct, we provide a linear time algorithm to find a median path with-
out restrictions on its length between two fixed vertices in a biconnected outerplanar graph.

Keywords: Path location, path median, biconnected outerplanar graphs.

1 Introduction

During the last two decades, there has been a growing interest in the developing of location models
on networks, with particular attention to the location of extensive facilities, such as paths or trees.
In almost all cases, the criteria used are the minsum criterion, according to which the sum of
the distances from all the vertices of the network to the facility is minimized, and the minimazx
criterion, that is, the distance from the facility to the farthest vertex in the network is minimized.
The present paper investigates the problem of locating a path-shaped facility with the minsum
criterion without restrictions on the length of the path. Examples of such a problem include the
location of pipelines, evacuation routes, mass transit routes or routing a highway through a road
network, and public transit lines. An optimal path for this problem is also referred to as a median
path, thus, in the rest of the paper, we will refer to the problem under study as the Median Path
Problem (MPP).

In the literature MPP was widely studied when there is a restriction on the length of the path.
On general networks, this problem is NP-complete [5, 12, 3]. In particular, in [5] it is shown that
it is NP-Complete on planar graphs with vertex degree less than or equal to 5, while [3] provides
the same result on rectangular grid graphs. In [12] it is shown that the median path problem
with length at most equal to a given constant, is NP-hard on outerplanar graphs, but in [7] it is
actually shown that the same problem is NP-hard even on the class of cactus graphs. Nevertheless,
[12] provides a pseudo-polynomial time algorithm for the solution of MPP with restricted length
on series-parallel graphs. If the graph is unweighted, the above algorithm has an overall time
complexity of O(n”logn), where n is the number of vertices of the graph.

For MPP with restricted length on general networks different directions were investigated: in [7]
a metaheuristic approach was presented, while [2] suggests a branch-and-cut algorithm. Finally, a
number of papers have investigated the problem of locating median paths with restricted length
on trees and efficient polynomial time algorithms were provided (see, e.g., [1, 4, 5, 9, 11]).

Since also MPP (without restrictions on the length of the path) is NP-hard on general networks
[5], this problem was mainly studied on trees, too [10, 11, 13], while, to the best of our knowledge,
it has not been studied yet on networks with cycles.

In this paper we study MPP on the class of outerplanar graphs. Notice that, if we consider a

*Universita di Roma “La Sapienza”, Dip. Statistica, Probabilita e Statistiche Applicate.
TUniversita di Roma “La Sapienza”, Dip. Matematica per le Decisioni Economiche, Finanziarie ed Assicurative.
*University of Cape Town, Dep. of Mathematics and Applied Mathematics.

biconnected outerplanar graph G, the solution is trivial, since a median path without restrictions
on the length is simply given by the path passing through all the vertices on the outercycle of G.
On the other hand, this is not true if we consider the case of finding a median path between two
fixed end vertices in a biconnected outerplanar graph. Actually, this will turn out to be a special
case of our more general problem for which we will provide an algorithm linear in the number of
vertices of the graph. In this paper we consider the more general class of connected outerplanar
graphs (or, simply, outerplanar graphs). Figure 1 shows an example of a connected outerplanar
graph that is not biconnected. In particular, we focus our attention on the case in which equal
weights are assigned to the edges of G, while nonnegative weights are associated to the vertices
of G. We show that for a given graph G with n vertices we can suitably decompose G into k
components and represent it by a tree, 7, that we call representation tree of G. For solving MPP
in an outerplanar graph G we provide an algorithm with complexity O(kn).

The remainder of this paper is organized as follows: Section 2 provides some notation, defi-
nitions and some basic properties; Section 3 describes the preprocessing phase that is needed in
order to compute the basic quantities associated to the vertices and the edges of the graph, while
Section 4 provides the algorithm for solving MPP in an outerplanar graph. Section 5 provides
some concluding remarks and extensions.

2 Basic properties and definitions

Let G = (V, E) be an outerplanar graph, where V is the vertex set, |V| = n, and E is the edge set.
Here G is assumed to be finite, undirected, connected and without multiple edges or self-loops.
Suppose that a weight equal to one is assigned to each edge, and a nonnegative weight w, is as-
signed to each vertex v € V. For any two vertices u and v, we define the distance d(u,v) between
u and v as the number of edges (length) of the shortest path between them in G. Given any path
P, the distance from u to P, d(u, P), is the minimum among the distances from u to the vertices
in P. Given a path P, the distsum D(P) of P is the sum of the weighted distances from all the
vertices of G to P, that is, D(P) =) .y wyud(u, P).

In this paper we study the following MPP:

Given a connected outerplanar graph G, find a path P* in G such that D(P*) is a minimum w.r.t.
all the possible paths P in G.

Given a graph G, a vertex v is called cut verter if removing v and all edges incident to
it disconnects G. A bridge is an edge of G whose removal increases the number of connected
components of G [6]. Notice that the end vertices of a bridge are cut vertices of G. A block is a
maximal subgraph of G with no cut vertices and a face is a chordless cycle of G. Notice that a
block may correspond to a face, or it may be composed by a set of faces.

An outerplanar graph G can be decomposed into blocks and bridges and it can be represented
by a tree 7 = (Vr, Er), where Vr is the set of blocks and bridges of G. In the rest of the paper
we will denote by B both a block or bridge of G and the corresponding vertex of 7. There is an
edge between two vertices of 7T if they share a cut vertex in G (see, Figure 1). We call 7 the
representation tree of G. We root 7 at any block H and we denote by 7y the resulting rooted
tree. Following the usual notation in graph theory [6], given B # H, the subtree of 7y rooted
at B is denoted by 7p and the set of its vertices by V(7). A block of G that corresponds to a
leaf of 7" will be called leaf block. With respect to the representation tree 7, we can state some
properties that characterize an optimal path P* in an outerplanar graph.

Property 1 The end vertices of an optimal path P* do not necessarily belong to a leaf block of
T (see, for example Figure 2).

Property 2 Suppose that an optimal path P* ends in a block or a bridge B of G. Then, all the

@ (b)

Figure 1: (a) An outerplanar graph: one of its blocks is highlighted in boldface, while one of its
bridges is given by the edge with white end vertices. Both these end vertices are examples of cut
vertices. (b) The representation tree of G rooted at the block in boldface.

vertices of B belong to P*. In particular, if B is a bridge, it must contain a vertex having degree
1, and, thus, it must be a leaf of the representation tree 7.

Notice that, after Property 2, an optimal path P* never ends in a non-leaf bridge.
This property is straightforward since, if some vertices of a block B were not included in P*, then,
another path P could be obtained by including such vertices, thus obtaining D(P) < D(P*), a
contradiction. The property trivially holds also for bridges.

After Properties 1 and 2, we know that, if G has more than one block, an optimal path P* of
G starting at a block H and ending in a block B must include all the vertices of H and B. In
addition, due to the structure of G, P* must extend out of H passing through a cut vertex. Thus,
given a graph G, the idea of the algorithm is the following. We root the representation tree 7 at
any block H and we visit 7y top down, block by block in a BFS. order. At each block, the visit
proceeds face by face inside the block. Let u be a vertex belonging to a face f in a block B; then,
among all the paths starting from H and ending in u, we search for the one that minimizes the
distsum. We call such a path best path from H to u and we denote it and its distsum by Py (u)
and Dy (u), respectively. To simplify our notation, when this does not cause any confusion, we
refer to Py (u) and Dy (u) simply by P(u) and D(u), respectively. In order to find P*, among

@) (b)

Figure 2: An outerplanar graph G with two faces and three bridges. Here the leaf blocks of the
corresponding representation tree are the left- and right-most bridges G. Suppose that each vertex
has weight equal to 1: the path in (a) has distsum equal to 2, while the path in (b) has distsum
equal to 4.

all the best paths Py (u) found for every possible H and u, we select the one with the minimum
distsum.

Consider 7y and any block B # H and let V(B) be the set of vertices of B. Denote by cp
the cut vertex that B shares with its parent in 7. We define cg as the source of B. Since B is a
biconnected outerplanar graph and all its vertices lie on the outercycle of B, it is always possible
to number clockwise the vertices of B in an increasing order such that the label equal to |V(B)] is
assigned to cp (see Figure 3). Suppose that Fp is the number of faces in B. It is also possible to
assign a number f, f =1,..., Fig, to the faces of B such that cg € Fp and each face f is adjacent
to (i.e., has a chord in common with) exactly one face with a number grater than f [8]. We will
denote by (rf,ty) a chord separating face f # Fp from the unique face f’ adjacent to f with
f" > f. To be consistent with the numbering of the vertices, we assume t; < 7y, and for any
edge (u,v) in face f, we suppose that v < u (see Figure 3). With respect to face f, we denote by
V(f) and E(f) the set of vertices and the set of edges in f, respectively. Finally, we define the set
V(ry,ty) as the set of vertices v in V(B) with number t; < v < ry. With respect to a given 7y,
for a chord (u,v) belonging to face f of a block B # H, we denote by II(u,v) the unique path in
B connecting u to v that passes through all the vertices in V' (u,v). For example, in Figure 3 we
have TI(8,5) = {(5,6)(6,7)(7,8)}.

Property 3 Given a block B in G, consider the clockwise numbering of the vertices of B intro-
duced above. For any pair of vertices s and ¢ in B, a path from s to ¢t that minimizes the distsum
never passes through a chord (u,v) with s <v <tand s <u <t.

Figure 3: Notation in an outerplanar graph.

3 The preprocessing phase

In order to provide an algorithm for the MPP in GG, we need a preprocessing phase in which, for
any given block H of G we visit the tree 7y bottom up, level-by-level, and compute some quan-
tities associated both to its edges and its vertices. Nevertheless, unlike the preprocessing usually
implemented for median path location problems on trees (see for example [4, 10]), here the partic-
ular structure of each vertex of 7y (i.e., a block of G) requires a separated procedure to compute
the necessary quantities. We first focus on this point, before giving the detailed description of the
whole preprocessing.

Given a vertex of 7y, which corresponds to a block B, and its source cut vertex cpg, we need
to compute the following quantities:

Sep, the sum of the weighted distances to cp from all the vertices of G' belonging to the blocks
in 7p;

W, the sum of the weights of the vertices of G belonging to the blocks in 75.

In order to compute S., and W, we visit the faces of B from f =1 to f = Fp — 1. For a given

face f we compute the following quantities:

Wi, , the sum of the weights of the vertices of V(7g)\[V(B)\V (rf,ts)] that are closer to t; than
to ry; such vertices are said to be assigned to t; in f.

W,,, the sum of the weights of the vertices of V(7p)\[V(B)\V(rs,ty)] that are closer to rf
than to ty; such vertices are said to be assigned to ry in f.

When in f for a vertex v we have d(v,r) = d(v,ty), this vertex cannot be definitively assigned
to only one between ¢ and ty. We refer to such vertices as unassigned in f, and denote by W,
the sum of their weights.

rtr

Similarly, we compute S, (S;;) as the sum of the weighted distances to r; (ty) from all the
vertices assigned in f to ry (ts), while the sum of the weighted distances from all the unassigned
vertices v in f - computed either with respect to d(v,rs) or d(v,ty) - is denoted by S, ¢, .
For a given 7y, the blocks are analyzed following a bottom up visit of 7. The quantities asso-
ciated to 7y and ty are computed during a clockwise visit of the outercycle of each block B, that
corresponds to the visit of the faces of B from f =1 to f = Fp — 1 (see Figure 3). Then, in Fjp,
we compute the quantities associated to cp.

Notice that in our algorithm we need only the quantities associated to the cut vertices of G
and to pairs of vertices in V' that correspond to chords of G. Nevertheless, we compute the same
quantities for all the vertices u € V and all the edges (u,v) € E. At the beginning we set W,, = w,,
and S, =0, for all u € V and Wy, = Sy, =0, for all (u,v) € E.

In our preprocessing, in each face f we need to compute an additional quantity associated to
the chord (ry,ts), which is denoted by Sav(ry,ts). This quantity is necessary when, during the
algorithm, we visit the unique face f’ that is adjacent to f with f' > f. Sav(ry,ty) is the saving
in the distsum that can be obtained in a path from H to u € V(f) containing both ry and ¢y,
when the subpath II(ry,¢r) is included instead of the chord (r,t;). Also for these quantities we
compute Sav(u,v) for all (u,v) € E. If (u,v) is not a chord, we have no saving at all. Thus, at
the beginning we set Sav(u,v) = 0, for all (u,v) in G and, during the preprocessing, we update
only the quantities corresponding to the chords of G.

For a block B in 7y, the following procedure is repeatedly applied to each face from f = 1 to

[= Fp —1in order to compute Wy, W,,, W, Stiy Srpy Sr Sav(rg,ty).

stes rteo

algorithm FACE(f)

input: A face f, with vertices ry, ty, weights W, and S, Yu in V(f),
weights Wy, and Sy, V(u,v) in E(f).

output: Updated values for Wy, Wy.., Wyt Sty Srpy Sppe,y Sav(ry,ty).
begin
v = tf

Let (u,v) be the unique edge in E(f) such that v < u
while u < ry
Consider the quantities W, S,, Wy, and Sy,
if (d(u,ty) < d(u,ry))
Wtf = Wtf + Wy + W
Sty = St; + (Su+ Waud(u,ty)) + (Suv + Waud(v,ty))
else if (d(u,ty) = d(u,7y))
Wtf = Wtf + W
ertf = ertf + Wy
Stf = Stf + (Suv + Wuvd(v, tf))
Srftf = Srftf + (Su + Wud(u,tf))
else [d(u,ty) > d(u,ry)]
if (d(u, rf) = d(v, tf))
er = er + Wy
WT'ftf = WT'ftf + Wuv
Sr; = S + (Su + Wad(u,ry))
Srftf == Srftf + (Suv + Wuvd(u,rf))
else
er = W’rf + Wy + Wi
Sp; = Sp; 4 (Su + Waud(u, 7)) 4 (Suv + Wapd(u,ry))
end if
end if
v=u
Let (u,v) be the unique edge in E(f) such that v < u
end while
U=TrTf
Wy, =Wy, + Wy,
Srp = Sp; + Suw
Sav(ry,tr) =3 ey Wimin{d(i,ry), d(i,tf) }+
+ Z(i,j)eE(f) [Wij min{d(,ry),d(j,tr)} + Z(i,j)eE(f) Sav(i, j)
end

To compute Wy and Sg in f = Fp we apply the following formulas:
Wep = Wep + 2uev(p)justes Wi
Sep = Sep + 2 uev(p (Su+ Waud(u, cg)) + X yep() (Suw + Wy min{d(u, cp), d(v, cp)}).

The pseudo-code for the whole preprocessing on 7y is reported below.

algorithm PREPROCESSING(7g)

input: A weighted outerplanar graph G and its representation tree rooted at block H, Ty.
output: Updated values for W,,, Sy, for all uw in V; Wy, Suv, and Sav(u,v), for all (u,v) in E.

begin
Visit 7y bottom up level-by-level.
for each block B # H
Starting from cp, number clockwise the vertices of B in an increasing order
Number the faces of B from 1 to Fig such that cg € Fg and each face f is
adjacent to exactly one f/ > f
for f=1,....Fg—1

FACE(/)
end for
f=Fp

WCB = WCB + ZuGV(f)hL;ﬁCB W
Sep = Sep + ZuEV(f)(SU + Wyd(u,cp)) + Z(u,v)eE(f)(Suv + Wy min{d(u, cg),d(v,cp)})
end for
end

The following proposition states the correctness of the above procedure.

Proposition 1 For a given Ty and B in Ty, let f' be a face and f < f’ be adjacent to f' in B.
Consider a vertex v € V(ry,ty), v # ry,ty, then one of the following holds (see Figure 4):

1. v is assigned to vy (tg) in f. In this case, if vy (ty) is assigned in f' to some vertex (r'; or
t's), then v is assigned to the same vertex asry (tg) in f'. Otherwise, if vy (tf) is unassigned
m [, v is unassigned in f' as well;

2. v is unassigned in f. In this case, in f', v is assigned either to vy, or to ty, according
to d(ry,rp) < d(tg,ty), or d(rg,ry) > d(ty,ty), respectively. If d(rg,ry) = d(tg,ty) v
remains unassigned also in f’.

Proof. To prove the first point, we notice that any path from v to 74/, not containing 7, must
contain ty. Since r; and ¢y are adjacent, we have |d(t,) — d(ry,)] < 1. In addition, by
hypothesis, v is assigned to r; and, thus, d(v,t;) = d(v,ry) + 1. By the Bellman optimality
principle, there exists a shortest path from v to 7/ containing r¢ such that

d(v,rg) =d(v,rg) +d(rs,re).
Similarly, there exists a shortest path from v to ¢y containing r; such that
d(v,ty) =d(v,ry) +d(rg,ty).

Hence, v is assigned to rg/, or to ty or it is unassigned if d(r¢,rp) < d(ry,ty), or d(ry,rp) >
d(ry,ty) or d(ry,rp) =d(ry,ty), respectively.
The same proof holds when v is assigned to t; in f.

We now prove point 2. By the Bellman optimality principle we have:

dw,rp) = min{d(v,ry) +d(rg,re),d(v, ty) +d(ts,re)} (1)
d(v,tf/) = min{d(v,rf)+d(rf,tf/),d(v,tf)—i—d(tf,tf/)}.

that, under the hypothesis that v is unassigned in f, reduces to:

d(vvrf’) = min{d(rf’Tf’)’d(tf’rf’)} (2)
d(’U,tf/) = min{d(rf,tf/),d(tf,tf/)}.

since d(v,ry) = d(v,ts). Considering that r; and ¢, are adjacent, we also have

d(tg,ry) = d(rg,tp) =min{d(ry,re), d(ty,ty)} +1, (3)
It is easy to check that if d(r¢,rp) < d(ty,ty), v is assigned to rp; if d(rg,re) > d(ty, ty) v is
assigned to ty/, while, if d(r¢,rs) = d(ts,ts), v remains unassigned in face f’. a

Proposition 2 The preprocessing phase applied to Ty runs in O(n) time.

Proof. When visiting a face f, it is possible to update in constant time the distances d(u,ts)
and d(u,rs) of each vertex u € V(f). Actually, let L; = |V(f)|, so that Ly — 1 is the length of
the path from ¢; to r; in face f that does not pass through the chord (rf,ty). The procedure
FACE(f) starts from ¢y, and visits f vertex by vertex. For each vertex u € V(f) it updates in
constant time the length of the two paths connecting w to ry and to ¢y, respectively, and not
containing the chord (ry,¢s). Denote this two lengths by 6(u,rs) and §(u,tr), respectively. For
any pair of adjacent vertices u and v in f, u,v # ry,ty, v < u, we have d(u,ty) = §(v,ts) + 1 and
O(u,rg) =Ly —1—46(u,ty). In the preprocessing each face f is visited once, and, on the basis of
Proposition 1, all the necessary quantities in f are correctly computed in time O(|]V(f)]). Notice
that for any given block B, the computation of S., and W,, is done in constant time. Hence, for
a given representation tree Ty, the overall time complexity of the preprocessing phase is O(n). O

|

\% e
o/

3 b)

Figure 4: Examples of assigned and unassigned vertices. a) Vertex v is assigned to r; in f and ry
is assigned to r in f'; thus, v is assigned to 7 in f’, too. b) Vertex v is unassigned in f, but in
/

f’ it is assigned to th

4 The algorithm

The algorithm for finding a median path in an outerplanar graph G, roots the representation tree
at each block H, and, for each vertex u ¢ V(H), finds the distsum of a best path from H to u.
The algorithm first performs the preprocessing phase, then it computes the distsum Dy of any
hamiltonian path of H by the following formula:

Dp= > Sut >, Sw (4)

uweV (H) (u,v)EE(H)

The algorithm visits 7y in a BFS order and in each visited block B computes the distsum
Dy (u) of a best path from H to each vertex u of the block. If B is a bridge corresponding to the
edge (cp,u), the distsum of P (u) is obtained by the following formula:

DH(U) ZDH(CB)—WU. (5)

If B is a biconnected block then, as in the preprocessing phase, the algorithm numbers the faces

of B from 1 to Fp such that the source cp belongs to face Fg. The visit of B starts from face Fig
and proceeds face by face up to f = 1. In each face f the algorithm finds Dy (u) for each vertex
u of f. Notice that, for any given u, in face f only the distsum the subpath of Py (u) contained
in face f must be computed. In order to evaluate the distsum of all possible such subpaths, the
algorithm evaluates clockwise and counterclockwise subpaths w.r.t. f. When f = Fz the subpath
necessarily starts from the source cp and it can reach vertex w visiting f either clockwise or
counterclockwise. On the other hand, when f # Fpg, it is necessary to distinguish four different
cases that correspond to clockwise and counterclockwise subpaths starting either from 7 or from
ty.
Following the counterclockwise order, in each face f the algorithm assigns local labels 1,2,...,ny,
with ny = |[V(f)|, to the vertices of f, so that, if f = Fp, vertex cp has label 1 and, if f # Fpg,
vertex r; has label 1 and vertex ¢y has label ny. Let vy : {1,...,ns} — V(f) be the function that
associates to each local label the corresponding vertex. For each vertex u € V(f) we consider the
following two quantities that correspond to the minimum distsum for the different types of paths
from H to u. For the sake of simplicity, in the rest of this section, we suppose that the root block
H is fixed, so that in the notation we can drop the reference to it.

e DE(u) is the minimum distsum of a path from H to u € V(f) that visits f in a counter-
clockwise order (counterclockwise path for short);

e D®(u) is the minimum distsum of a path from H to u € V(f) that visits f in a clockwise
order (clockwise path for short).

In addition, if f # Fg, the quantities D*(u) and D (u) are computed on the basis of the following
four quantities:

° D{,’f (u) is the minimum distsum of a counterclockwise path from H to u containing ry but
not ty;

. DTLf’tf (u) is the minimum distsum of a counterclockwise path from H to u containing both

ry and ty;
. Dg (u) is the minimum distsum of a clockwise path from H to u containing ¢t but not r;

. fo +t; () is the minimum distsum of a clockwise path from H to u containing both ry and
ty.

Then, w.r.t. vertex u € V(f) we have:

D(u) = min{ DX (u), D% (u)}. (6)

10

and, in particular, when f # Fg, we have:

D*(u) = min{ D (u), D} , (u)}
DR(u) = min{ D (u), DX, (u)} (™)

Tty

W.r.t. the local labels of the vertices of a face, we introduce some cumulative weights that are useful
for the computation of the above distsum. For any f in the current block, the following formulas
compute cumulative weights visiting f in clockwise and counterclockwise order, respectively.

KR("f) =Way;np)
WR(h,h—I-l)ZWR(h+1)+WUf(h)’vf(h+1) h:nf—l,...71 (8)
WR(h)ZWR(h,h+1)+va(h) h:nf—l,...,l

and, similarly:

W) = W)
KL(h_lﬁ):WL(h_l)‘Fva(hfl),vf(h) h=2,...,n¢ (9)
WL(h)ZWL(h—l,h)—‘erf(h) h=2,...,n

Suppose that f = Fp and DL(vs(h — 1)) has been computed for some h € {2,...,n;}. When
the counterclockwise path from H to vs(h — 1) is extended to vs(h), for some vertices of f their
distance to the path decreases, while for other vertices it remains the same. In particular, if
ny + h is even, the distance of the vertices having local label from h to nfT'HL decreases by 1; on
the other hand, if ny + h is odd, the distance of the vertices having local label from A to _"fTHLJ
decreases by 1. In addition, if (v¢(h — 1),v¢(h)) is a chord of G, then, by Property 2, the path
must contain II(vs(h — 1),vs(h)) and, therefore, the distsum of the enlarged path decreases by
Sav(vy(h—1),vs(h)). A similar argument holds when Df(v;(h + 1)) has been computed and the
clockwise path from H to vs(h + 1) is extended to v¢(h). Hence, for f = Fg, we obtain:

D(cp) if h =2
—(WE(n) - /WR(nfTM, nf—;rh +1)) and ny+ his even
—Sav(vs(h —1),vs(h))

D(cp) ifh=2
—(WER(h) — WR([2Ry and ny + h is odd
—Sav(vs(h —1),vs(h))
D*(vs(h)) = (10)
DE(ve(h —1)) ifh=3,..,ny

_(WR(h) - /WR(WQ——HI, nf—;h +1)) and ny+ his even
—Sav(vg(h —1),v¢(h))

DL(vf(fl\f 1)) . ifh:3,...,nf
—(WE(h) — WR([2"7)) and ny + h is odd
—Sav(vg(h —1),v¢(h))

11

D(CB) ifh:nf
—(/WL(h)—/WL(%,%+1)) and ny is even
1

D(cp) . - if h =ny
—(WE(h) = WE(TET)) and ny is odd
—Sav(us(h), v;(1))
DR(uy(h)) = (1)
DR(vf(h-i—l)) ifh:nf—l,...,Q
—(WL(h) - /VVL(Q % 11)) and his even
—Sav(vg(h+1),vs(h))

DE(vp(h+1)) ifth=ny—1,..,2
—(WL(h) - /VVL((%W)) and h is odd
—Sav(vg(h+1),v¢(h))

with D(cg) = Se.

When f # Fp, similar formulas can be provided for computing the distsum of a counterclockwise
path from H to vg(h) in f by updating the distsum of the previous counterclockwise path from
H to vp(h—1) in f (the same holds for clockwise paths). However, in this case, four quantities
must be con.lputed, that is, fo (u), DrLfﬁtf (u), Dg (u) and Df;tf (u). These formulas are given in
the Appendix.

The following procedure to find a median path in an outerplanar graph is based on the previous
formulas.

12

algorithm MEDIANPATH

input: A weighted outerplanar graph G and its representation tree 7.
output: The distsum D* of a median path P* of G.

begin
D* =00
for each block and each leaf bridge H
Root 7 at H and let 7y be the resulting rooted tree
PREPROCESSING(7y)
Compute the distsum Dy of any hamiltonian path of H by formula (4)
if Dy < D* then D* = Dy
for each vertex uw in H Dy (u) = Dy
Visit Ty in BFS order
for each visited B # H of 7y do
Let ¢ be the source of B
if B is a bridge (cp,u) then
Compute Dy (u) by formula (5)
else (B is a block)
Number the faces of B from 1 to Fig such that cg € Fg and each face f is
adjacent to exactly one face f/ > f
for f=Fpg,...,1
MEDIANPATHFACE(f)
end for
end for
end for
end

13

algorithm MEDIANPATHFACE(f)

input: A face f, weights W,,, Yu € V(f), Wy, and Sav(u,v), ¥Y(u,v) € E(f).
output: Vu € V(f) the distsum Dy (u) of a best path from H to v and the distsum
D* of the best current path starting from H.
begin
Let ny be the number of vertices of f
Starting from cp (if f = F) or from r; (if f # Fp)
assign counterclockwise local labels 1, ...,ny to the vertices of f
for h =ny,..,1
Compute /WR(h)
if h # ny then compute WR(h, h+1)
end for
for hel,..,ny
Compute WL(h)
if h # 1 then compute /WL(h —1,h)
end for
if f = Fp then
for all vs(h) in f such that vs(h) # ¢
Compute D (v (h)) and DE(vs(h
Dy (h)) = min{ D" (vy (h)), DR (v
if D(vy(h)) < D* then D* = D(v
end for
else (f # Fp)
for all vs(h) in f such that vy(h) # ry, ty
Compute DE (vs(h)) and DE 4, (vr(h)
Compute Dﬁ;(vf(h)) and DP”f (vg(h)

— X

)
(h)}
(7))

-~ s

)
Tty)
D™ (vy(h)) = min{D% (vp(h)), Df 4, (vy(R))}
D (vy(h)) = min{D{l (vs(h)), Df , (vy(h))}

D(vs(h)) = min{ D (v (h)), DA (w7 (h))}

if D(vy(h)) < D* then D* = D(vs(h))

end for
end

Proposition 3 Algorithm MEDIANPATH correctly finds the distsum of a median path on an
outerplanar graph G in O(n?) time.

Proof. On the basis of the properties listed in Section 2, an optimal path P* in G that ends in
two blocks or bridges of G, say B; and Bs, contains all the vertices of B; and Bs. Taking into
account the structure of an outerplanar graph, and exploiting the possibility of representing it
through the representation tree 7, our algorithm enumerates all the possible paths that can be
generated in G with such properties and, among them, selects the one with the minimum distsum.
For the time complexity result, we first observe that in our algorithm the representation tree is
rooted at each block or bridge, hence, since G can be decomposed into k blocks and bridges, the
graph is visited at most O(k) times. For each rooted representation tree the preprocessing phase
requires O(n) time (see Proposition 2). On the other hand, the algorithm computes the distsum
of any hamiltonian path of H in constant time, while the distsurn Dy (u) for all the u € V(H) are
initialized in O(|]V (H)|) time. In the rest of the procedure, for each visited block B, the analysis

14

requires a time linear in the number of vertices of B. In fact, if B is a bridge it requires a constant
time. On the other hand, if B is a biconnected block, the procedure MEDIANPATHFACE()
is performed for each face f of B in O(ny) time. This implies that the analysis of each block
requires O(|V(B)|) time. In conclusion, for each rooted representation tree 7y, our algorithm
requires O(n) time. Hence, the overall time complexity of the algorithm is O(kn). Notice that,
since k = O(n), the time complexity of our algorithm could be O(n?). ad

5 Conclusion

The algorithm proposed in this paper solves the Median Path Problem on an outerplanar graph
G in O(kn) time, where k is the number of blocks and bridges of G and n is the number of its
vertices. The problem is solved for the case in which nonnegative weights are associated to the
vertices of G, while equal weights are assigned to the edges. Notice that our algorithm cannot be
generalized in a straightforward way to the more general case in which arbitrary positive weights
are associated also to the edges. We shall leave the study of this problem to future work, but, in
the following, we provide a result that could help in the analysis of the computational complexity
of the problem, giving some intuition with it.

PROBLEM 1. Let G = (V, E) be an outerplanar graph; w : V — R a weighting function that
assigns a weight w,, to each v € V; £: E — R a weighting function that assigns a weight £(e) to
each e € E. Finally, let K > 0.

Find a path P in G such that the sum of the weighted distances to P from the vertices not in P
is exactly equal to K, that is, the distsum of P is K.

Proposition 4 PROBLEM 1. is NP-complete:

Proof. The proof is by reduction from the following problem that is shown to be NP-Complete
in [12].

PROBLEM 2. Two vectors of integers, (a1, as,...,a,) and (b1, ba,...,by,), are given such that
pSUED SIS
i=1 i=1

Find a subset of indices S € {1,2,...,n} such that } ;cqai + > ;450 = z

We show that PROBLEM 2 can be reduced to PROBLEM 1.

Consider the weighted outerplanar graph G shown in Figure 5, where all the vertices with degree
equal to 2 have weight equal to 1, while the remaining vertices have a weight equal to a quantity
Q >> T. Except for the two vertices A and B, and the edges (A, A’) and (B’, B) (with weight
equal to 1) the graph consists of n copies of a cycle (with 4 vertices) that share pairwise a common
vertex with degree 4. We number these cycles from 1 to n: in cycle ¢ we denote by A; and B; the
two vertices of degree 2 with weight equal to 1, respectively, and assign a weight equal to a; to
the two edges incident to A; and a weight equal to b; to the two edges incident to B; (see Figure 5).

Set K = % and consider a solution of PROBLEM 2 and the corresponding subset S. Then, it is
always possible to build in G a path P from A to B with distsum equal to K by including in P
edges (A, A’), (B’, B) and the pair of edges incident to vertex A; if i ¢ S, or the pair of edges
incident to vertex B; if i € S. In fact, for such P we have:

15

Zd(’U,P):ZbZ‘—FZai: g

vgP i¢s =

On the other hand, suppose that P is a path in G with distsum equal to K = % Let S be the
subset of indices of the vertices A; in G that does not belong to P. Then we have:

gz > dw,P)=> b+ a;

vg P i¢S icS

&

a ay & //’/ : \
()5 o o O==0
RO CEE

Figure 5: The outerplanar graph used for the reduction from PROBLEM 2.

To conclude this section, we notice that the algorithm presented in this paper solves MPP on
general outerplanar graphs: the only assumption is that it is connected. We already noticed that
when the outerplanar graph G is biconnected, the solution of MPP is trivial, but this is not true
if we consider the case of finding a median path P between two fixed end vertices. Once a pair
of vertices s and ¢ are fixed, one may be interested in finding a path in G that connects s and ¢
and minimizes the sum of the weighted distances from all the vertices of G to P. Our algorithm
can be applied to this problem directly, since in this case the graph G consists of a single block:
starting from s, we apply the same formulas provided in Section 4 and the optimal path from s
to t is computed in time linear in the number of vertices of the block.

16

APPENDIX

Dy (vy(h)) =

T

DL, (vy(h) =

Df (v (h)

Dﬁf,tf (v (h))

D" (ry)

DTLf (vf(/h\— 1)) .
—(WHh(h) — WR(mGE, ot 4
—Sav(vy(h —1),vs(h))

Dy, (vy(h 1))

—(WHR(h) = WR([257)
—Sav(vg(h —1),vs(h))

DR(ry) + Sav(rg,ty)

D,flf’tf (Qif\(h - 1))/\
—(WR(h) — Wh(2LERY)
—Sav(vg(h —1),v¢(h))

DrLf,tf(Uf<h —-1))

—Sav(vy(h —1),vs(h))

D(ty)

Dfi(vs(h+1))
—(WE(h) = WE(L))
—Sav(vg(h),ve(h+1))

Dt}i(’l}f(/h\—F 1) .
—(WE(h) — WE([L],[57))
—Sav(vg(h),ve(h+1))

DE(tg) + Sav(ry, ty)
DR, (vp(h+1))

—(WE(h) — WE(k, by 1))
= —Sav(vg(h),ve(h+1))
D, (p(h+1))

—(WE(h) = WE(5])

—Sav(v(h),vr(h+1))

17

—(WE(h) — WR(| 2|, [rath

ifh=1
ith=2,..,ny-1

1)) and ny + h is even

if h = 2,..,np—1
and n¢ + h is odd

ifh=1
ifh=2,..,ny—1

and ny + h is even

if h = 2,..,ny—1
"1)) and ns + h is odd

ifh=mny

and h is even

and h is odd

ifh=ny

and h is even

ifth=ny—1,...,2
and h is odd

(13)

(15)

References

[1]

2]

Alstrup S., Lauridsen P.W., Sommerlund P., and Thorup M., Finding cores of limited length,
Techincal Report, The IT University of Copenhagen, 2001.

Avella P., Boccia M., Sforza A., Vasil’ev 1., A branch-and-cut algorithm for the median-path
problem, Computational Optimization and Applications, 32 (2005), 215-230.

Becker R.I., Lari 1., Scozzari A., Storchi G., The location of median paths on grid graphs,
Annals of Operations Research, 150 (2007), 65-78.

Becker R.I., Chiang Y.I., Lari L., Scozzari A., Storchi G., Finding the ¢-core of a tree, Discrete
Applied Mathematics, 118 (2002), 25-42.

Hakimi S.L., Schmeichel E.F., Labbé M., On locating path- or tree- shaped facilities on
networks, Networks, 23 (1993), 543-555.

Harary F., Graph Theory. Reading, MA: Addison-Wesley, 1994.

Lari I., Ricca F., Scozzari A., Comparing different metaheuristic approaches for the median
path problem with bounded length, European Journal of Operational Research, to appear
(doi:10.1016/j.ejor.2007.07.001).

Lari I., Ricca F., Scozzari A., The forest wrapping problem on outerplanar graphs, Lecture
Notes in Computer Science, 2573 (2002), 345-354.

Minieka E., The optimal location of a path or tree in a tree network, Networks, 15 (1985),
309-321.

Morgan C.A., Slater J.P., A linear Algorithm for a core of a tree, Journal of Algorithms, 1
(1980), 247-258.

Peng S., Stephens A.B., Yesha Y., Algorithms for a core and a k-tree core of a tree, Journal
of Algorithms, 15 (1993), 143-159.

Richey M.B., Optimal location of a path or tree on a network with cycles, Networks, 20
(1990), 391-407.

Slater P.J., Locating central paths in a graph, Transportation Science, 16 (1982), 1-18.

18

