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Abstract

We study the angular process related to random walks in the Euclidean and in the non-Euclidean
space where steps are Cauchy distributed.

This leads to different types of non-linear transformations of Cauchy random variables which
preserve the Cauchy density. We give the explicit form of these distributions for all combinations of
the scale and the location parameters.

Continued fractions involving Cauchy random variables are analyzed. It is shown that the n-stage
random variables are still Cauchy distributed with parameters related to Fibonacci numbers. This
permits us to show the convergence in distribution of the sequence to the golden ratio.

Keywords: hyperbolic trigonometry, arcsine law, continued fractions, Fibonacci numbers, non-linear trans-
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1 Introduction
We consider a particle starting from the origin O of R2 which takes initially a horizontal step of length 1
and a vertical one, say C1, with a standard Cauchy distribution. It reaches therefore the position (1,C1).
The line l1 joining the origin with (1,C1) forms a random angle Θ1 with the horizontal axis (See Figure
1(a) below).

On l1 the traveller repeats the same movement with a step of unit length (either forward or backward)
along l1 and a standard Cauchy distributed step, say C2, on the line orthogonal to l1. The right triangle
obtained with the last two displacements has an hypothenuse belonging to the line l2 with random
inclination Θ2 on l1.
After n steps the sequence of random angles Θ1, · · · ,Θn describes the rotation of the moving particle

around the starting point, their partial sums describe an angular random walk which can be written as

Sn = Θ1 + · · ·+ Θn =
n∑
j=1

arctan Cj (1.1)
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Figure 1: The angular process in the Euclidean plane.

where Cj are independent standard Cauchy random variables. If the random steps of the planar random
walk above were independent Cauchy random variables with scale parameter aj and location parameter
bj then the process (1.1) must be a little bit modified and rewritten as

Sn = Θ1 + · · ·+ Θn =
n∑
j=1

arctanCj , (1.2)

where Cj ∼ C(aj ,bj). The model (1.2) can be extended also to the case where the first step has length dj
and the second one is Cauchy distributed with scale parameter aj and position parameter bj (see Figure
1(b)), then

tan Θj = C“
aj
dj
,
bj
dj

”.
The same random walk can be generated if the two orthogonal steps, at each displacement, are

represented by two independent Gaussian random variables Xj and Yj . In this case, for each right
triangle, we can write

tan Θj =
Xj

Yj
.

If Xj and Yj are standard Gaussian random variables then tan Θj = Xj
Yj

possesses standard Cauchy distri-
bution and we get the model in (1.1). The model (1.2) can be obtained by considering orthogonal Gaussian

steps with different variances and in this case the parameter aj of the random variables Cj is the ratio
σjy

σjx
.

The model (1.1) describing the angular random process has an hyperbolic counterpart. We consider
a particle starting from the origin O of the Poincaré half-plane H+

2 = {(x, y) : y > 0}. At the j-th
displacement, j = 1, 2 . . . , the particle makes two steps of random hyperbolic length ηj and η̂j on two
orthogonal geodesic lines. The j-th displacement leads to a right triangle Tj with sides of length ηj
and η̂j and a random acute angle Θj . In each triangle Tj the first step is taken on the extension of
the hypotenuse of the triangle Tj−1 (see Figure 2). From hyperbolic trigonometry (for basic results on
hyperbolic geometry see, for example, [5]) we have that

sin Θj =
sinh η̂j√

cosh2 ηj cosh2 η̂j − 1
, cos Θj =

sinh ηj cosh η̂j√
cosh2 ηj cosh2 η̂j − 1

.

From the above expressions we have that

tan Θj =
tanh η̂j
sinh ηj

.
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If we take independent random hyperbolic displacements ηj and η̂j such that the random variables
Ej = tanh η̂j

sinh ηj
are standard Cauchy distributed then Θj = arctan Cj . If the triangles Tj were isosceles

then tan Θj = 1
cosh ηj

and the angle Θj ∈ [−π4 ,
π
4 ] so that in this case the Cauchy distribution cannot be

attributed to tan Θj .

η1 η1

O

ˆ

Θ1 Θ1ˆ

T1
T2

ˆ

Θ2
Θ2ˆη2

O

η2

Figure 2: The angular random process in the Poincaré half-plane.

In the model described here the random steps (and therefore the random angular windings Θj) are
independent. If we consider the model of papers [2] and [3], where the displacements are taken orthogo-
nally to the geodesic lines joining the origin O of H+

2 with the positions occupied at deviation instants,
the angular displacements Θj must be such that

sin Θj =
sinh ηj√

1 +
∏j
r=1 cosh2 ηr

= sinh ηj cos

(
arctan

j∏
r=1

cosh2 ηr

)

and therefore involve dependent random variables.
The process An =

∑n
j=1 area(Tj), describing the sum of areas of the hyperbolic triangles Tj , has a

much more complicated structure. For the area of the random hyperbolic triangle Tj we note that

area(Tj) =
π

2
−Θj − Θ̂j =

π

2
−
[
arctan

(
tanh η̂j
sinh ηj

)
+ arctan

(
tanh ηj
sinh η̂j

)]
=

π

2
− arctan

(
coth ηj
sinh η̂j

+
coth η̂j
sinh ηj

)
= arcotan

(
coth ηj
sinh η̂j

+
coth η̂j
sinh ηj

)
.

Since each acute angle inside Tj is linked to both sides of the triangle the analysis of the random process
An =

∑n
j=1 area(Tj) is much more complicated and we drop it.

Let Cj ∼ C(aj ,bj), j = 1, 2 . . . be independent Cauchy random variables with scale parameter aj and
location parameter bj . In the study of the angular random walk (1.1) and (1.2) we must analyze the
distribution of the following non-linear transformations of Cauchy random variables

U =
C1 + C2

1− C1C2
(1.3)

since
arctanC1 + arctanC2 = arctan

C1 + C2

1− C1C2
.
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We will show that the random variable (1.3) is endowed with Cauchy distribution but the value of the
parameters a1, b1 of C1 and a2, b2 of C2 heavily influence the structure of the parameters of U .

In particular, if b1 = b2 = 0 and a1 = a2 = 1, then U is still distributed as a standard Cauchy
distribution and therefore in (1.1) we have that

Sn
i.d.= arctan C.

Since also 1
C is a standard Cauchy, from (1.3), a number of related random variables preserving the form

of the Cauchy distribution can be considered. For example, the following random variables

Z1 =
C1C2 + 1
C1 −C2

, Z2 =
1−C1C2

C1 + C2
, Z3 =

C1 + C2

C1C2 − 1
,

also possess standard Cauchy distribution. We can also derive much more complicated random variables
by suitably combining three (or more) independent standard Cauchy C1,C2,C3 as

Z4 =
C1 + C2+C3

1−C2C3

1−C1
C2+C3
1−C2C3

=
C1 + C2 + C3 −C1C2C3

1−C1C2 −C1C3 −C2C3

and so on.

If b1 = b2 = 0 and the scale parameters a1, a2 are different, then (1.3) still preserves the Cauchy
distribution but with scale parameter equal to a1+a2

1+a1a2
and location parameter equal to zero. This can be

grasped by means of the following relationship

arctanC1 + arctanC2
i.d.= arctan

{
a1 + a2

1 + a1a2
C
}
, (1.4)

where Cj ∼ C(aj ,0). Result (1.4) is illustrated in Figure 3.

0

θ
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a
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C2

C

θ2
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0

Figure 3: The figure shows that shooting a ray with inclination Θ1, uniformly distributed, against the line at
distance a1 and then shooting a ray with a uniformly distributed angle Θ2 on the line at distance a2 is
equivalent to shooting on the barrier at the distance a = a1+a2

1+a1a2
with a uniformly distributed angle Θ.

By iterating the process (1.4) we arrive at the formula

3∑
j=1

arctanCj
i.d.= arctan

{∑3
j=1 aj + a1a2a3

1 +
∑
i6=j aiaj

C

}
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which gives an insight into further extensions of the process outlined above.
Many other relationships can be produced by combining the above results and we can observe that if
C1 ∼ C(a1,0) and C2 ∼ C(a2,0) are independent Cauchy random variables, then

W = a1a2
C1 + C2

C1C2 − (a1a2)2

also is a centered Cauchy random variable with scale parameter equal to a1+a2
1+a1a2

.

Much more complicated are the cases where the location parameters of the Cauchy distributions are
different from zero. For the special case where C1 and C2 are independent Cauchy such that C1 ∼ C(1,b)

and C2 ∼ C(1,b), the random variable (1.3) still possesses Cauchy density with scale parameter 2b2+4
b4+4 and

location parameter 2b3

b4+4 .

We have obtained the general distribution of (1.3) where C1 and C2 are independent Cauchy such
that C1 ∼ C(a1,b1) and C2 ∼ C(a2,b2) and also the distribution of

Û =
αC1 + βC2

γ + δC1C2

for arbitrary real numbers α, β, γ, δ. In particular, if C1 and C2 are independent standard Cauchy then
Û is Cauchy with scale parameter equal to γ+δ

α+β and location parameter equal to zero.

In the last section we have examined continued fractions involving Cauchy random variables. In
particular we have studied

Vn =
1

1 + 1
1+ 1

1+··· 1
1+C

(1.5)

and
Un =

1
1 + 1

1+ 1
1+··· 1

1+C2

(1.6)

which generalize the random variables V1 = 1
1+C and U1 = 1

1+C2 . Continued fractions involving random
variables have been analyzed in [4] and more recently in [1]. The random variable U1 has the arcsine
distribution in [0, 1], while Ut = tU1, with t > 0, has distribution

Pr{Ut ∈ ds} =
ds

π
√
s(t− s)

, 0 < s < t.

For each n ≥ 1, the random variables Vn, are Cauchy distributed with scale parameter an and position
parameter bn that can be expressed in terms of Fibonacci numbers. This permits us to prove the mono-
tonicity of an and bn and that limn→∞ an = 0 and limn→∞ bn = φ − 1 where φ = 1+

√
5

2 is the golden
ratio. Finally we obtain that the sequence of random variables 1 + Vn and 1 + Un, n ≥ 1, converges
in distribution to the number φ = 1+

√
5

2 . This should be expected since it has the infinite fractional
expansion

1 +
√

5
2

= 1 +
1

1 + 1
1+···

(1.7)

which is related to (1.5) and (1.6).

2 Centered Cauchy random variables
Our first task is the study of the distribution of the random variable

U =
C1 + C2

1− C1C2
(2.1)
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where Cj ∼ C(aj ,0) are independent Cauchy random variables with location parameter equal to zero and
scale parameter aj , j = 1, 2. We can state our first result.

Theorem 2.1. The random variable U in (2.1) possesses Cauchy distribution with scale parameter a1+a2
1+a1a2

and position parameter equal to zero. We can also restate the result in symbols as

U
i.d.=

a1 + a2

1 + a1a2
C.

Proof 1
We can prove Theorem 2.1 in two different and independent ways. The first one is rather technical and
starts with

Pr
{
C1 + C2

1− C1C2
< w

}
= E

{
Pr
{
C1 + C2

1− C1C2
< w

∣∣∣∣C2 = y

}}
=

1
π2

∫ ∞
−∞

a1

y2 + a2
1

dy
∫ w−y

1+wy

−∞

a1

x2 + a2
1

dx

then

Pr
{
C1 + C2

1− C1C2
∈ dw

}
=
a1a2dw
π2

∫ ∞
−∞

1 + y2

y2 + a2
2

dy
y2(w2a2

1 + 1) + 2yw(a2
1 − 1) + w2 + a2

1

.

The integral can be conveniently rewritten as

Pr
{
C1 + C2

1− C1C2
∈ dw

}
=

a1a2dw
π2

∫ ∞
−∞

[
Ay +B

y2 + a2
2

+
Cy +D

y2(w2a2
1 + 1) + 2yw(a2

1 − 1) + w2 + a2
1

]
dy (2.2)

where 

A = 2w(a2
1−1)(a2

2−1)
[w2(1−a1a2)2+(a1−a2)2][w2(1+a1a2)2+(a1+a2)2]

,

B = − (a2
2−1)[a2

1−a
2
2+w

2(1−a2
2a

2
1)]

[w2(1−a1a2)2+(a1−a2)2][w2(1+a1a2)2+(a1+a2)2]
,

C = −A(a2
1w

2 + 1),

D = (1−a2
1)[w

4(1−a2
2a

2
1)+w

2(1−a2
1)(3−a

2
2)−(a2

1−a
2
2)]

[w2(1−a1a2)2+(a1−a2)2][w2(1+a1a2)2+(a1+a2)2]
.

Two terms of (2.2) can be developed in the following manner∫ ∞
−∞

[
Ay

y2 + a2
2

+
Cy

y2(w2a2
1 + 1) + 2yw(a2

1 − 1) + w2 + a2
1

]
dy

=
A

2

∫ ∞
−∞

[
2y

y2 + a2
2

− 2y(a2
1w

2 + 1)± 2w(a2
1 − 1)

y2(w2a2
1 + 1) + 2yw(a2

1 − 1) + w2 + a2
1

]
dy (2.3)

where ∫ ∞
−∞

[
2y

y2 + a2
2

− 2y(a2
1w

2 + 1) + 2w(a2
1 − 1)

y2(w2a2
1 + 1) + 2yw(a2

1 − 1) + w2 + a2
1

]
dy

= lim
d→∞,c→−∞

log
a2
2 + y2

y2(w2a2
1 + 1) + 2yw(a2

1 − 1) + w2 + a2
1

∣∣∣∣d
c

= 0,

and by means of the change of variable

y
√
w2a2

1 + 1 +
w(a2

1 − 1)√
w2a2

1 + 1
= z

√
w2 + a2

1 −
w2(a2

1 − 1)2

w2a2
1 + 1

= z
a1(w2 + 1)√
w2a2

1 + 1
,
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the last integral in (2.3) reduces to the form∫ ∞
−∞

dy
y2(w2a2

1 + 1) + 2yw(a2
1 − 1) + w2 + a2

1

=
∫ ∞
−∞

dy[
y
√
w2a2

1 + 1 + w(a2
1−1)√

w2a2
1+1

]2
+ w2 + a2

1 −
w2(a2

1−1)2

w2a2
1+1

=
1

a1(w2 + 1)

∫ ∞
−∞

dz
z2 + 1

=
π

a1(w2 + 1)
. (2.4)

Result (2.4) leads us to the final expression of the probability

Pr
{
C1 + C2

1− C1C2
∈ dw

}
=

a1a2

π2

[
2w2(a2

2 − 1)(a2
1 − 1)2

[w2(1− a1a2)2 + (a1 − a2)2][w2(1 + a1a2)2 + (a1 + a2)2]
π

a1(w2 + 1)

+
Bπ

a2
+

Dπ

a1(w2 + 1)

]
dw. (2.5)

The most clumsy part of the proof consists in summing up the three terms of (2.5), after some algebra,
(2.5) takes the form

Pr
{
C1 + C2

1− C1C2
∈ dw

}
=

a1a2

π

(1 + w2)(a2 + a1)(1 + a2a1)[w2(1− a2a1)2 + (a1 − a2)2]
[w2(1− a1a2)2 + (a1 − a2)2][w2(1 + a1a2)2 + (a1 + a2)2]a1a2(1 + w2)

dw

=
1
π

a2+a1
1+a2a1(

a2+a1
1+a2a1

)2

+ w2

dw.

This concludes the first proof.

Proof 2
An alternative proof is based on the properties of the standard Cauchy distribution:

• If C is a standard Cauchy random variable, then 1
C is also a standard Cauchy random variable.

• If C1 and C2 are independent standard Cauchy, then C1+C2
1−C1C2

is also a standard Cauchy as a direct
proof easily shows.

We therefore have the following identities in distribution

U =
C1 + C2

1− C1C2

i.d.=
(a1 + a2)C

1− a1a2C1C2

i.d.=
(a1 + a2)C

1 + a1a2[1−C1C2 − 1]
i.d.=

(a1 + a2)C
1−a1a2
C1+C2

+ a1a2(1−C1C2)
C1+C2

1
C1 + C2

i.d.=
a1 + a2

1−a1a2
2C + a1a2

C

1
2
i.d.=

a1 + a2

1− a1a2 + 2a1a2
C

and this confirms our result. �

Remark 2.1. Since for a1 = a2 = 1 we have that U is still a standard Cauchy random variable, it follows
that if aj = 1 for j = 1, . . . n, we have

n∑
j=1

arctanCj
i.d.= arctan C.
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Remark 2.2. A simple byproduct of Theorem 2.1 is that

EeiβU =
1
π2

∫
R2
eiβ

x+y
1−xy

a1a2dxdy
(a2

1 + x2)(a2
2 + y2)

=
1
π2

∫ π
2

−π2

∫ π
2

−π2
eiβ

a1 tan θ1+a2 tan θ2
1−a1a2 tan θ1 tan θ2 dθ1dθ2

= e−
a1+a2
1+a1a2

|β|. (2.6)

In (2.6) we have used the transformations x = a1 tan θ1 and y = a2 tan θ2. In the special case a1 = a2 = 1
the relationship (2.6) yields

e−|β| =
1
π2

∫ π
2

−π2

∫ π
2

−π2
eiβ

tan θ1+tan θ2
1−tan θ1 tan θ2 dθ1dθ2 =

1
π2

∫ π
2

−π2

∫ π
2

−π2
eiβ tan(θ1+θ2)dθ1dθ2

=
2
π2

∫ π

0

x cos(β tanx)dx. (2.7)

In the last step of (2.7) we have used the transformations θ1 + θ2 = x and θ2 = y. The integral (2.7)
shows that, if (Θ1,Θ2) is uniform in the square S = {(θ1, θ2) : −π2 < |θi| <

π
2 }, i = 1, 2, then the random

variable W = tan(Θ1 + Θ2) has characteristic function e−|β| .

Remark 2.3. It is well-known that for a planar Brownian motion (B1(t), B2(t)) starting from (x, y) the
random variable B1(Ty) possesses Cauchy distribution with parameters (x, y) where

Ty = inf{t > 0 : B2(t) = 0}.

If the starting points of two planar Brownian motions (Bi1(t), Bi2(t)), for i = 1, 2, are located on the y
axis as in the Figure 4 below we have therefore that

Θ = Θ1 + Θ2 = arctanB1
1(Ta1) + arctanB2

1(Ta2)
i.d.= arctanC1 + arctanC2

i.d.= arctan
a1 + a2

1 + a1a2
C.

where C1 and C2 are two independent Cauchy random variables with scale parameters a1 and a2 respec-
tively and position parameter equal to zero. Therefore if the starting point of a third Brownian motion is(

0, a1+a2
1+a1a2

)
then B

(
T a1+a2

1+a1a2

)
represents its hitting position on the x-axis. This point forms with (0, 1)

and the origin a right triangle with an angle Θ = Θ1 + Θ2.

Theorem 2.2. If C1 and C2 are two standard, independent Cauchy random variables, then

Û =
γC1 + δC2

α− βC1C2

has Cauchy distribution with scale parameter γ+δ
α+β and location parameter equal to zero.

Proof
By applying the arguments of Theorem 2.1 we have that

Pr
{
γC1 + δC2

α− βC1C2
∈ dω

}
=

d
dω

1
π2

∫ ∞
−∞

dy
1 + y2

∫ αω−δy
γ+ωβy

−∞

dx
1 + x2

dω

=
dω
π2

∫ ∞
−∞

[
1

1 + y2

αγ + δβy2

y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

]
dy (2.8)

=
dω
π2

∫ ∞
−∞

[
Ay +B

1 + y2
+

Cy +D

y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

]
dy

8



a

a1

a2

B11(Ta1)B12(Ta2)

1 1

B1(Ta)

θ1θ2 θ

Figure 4: The hitting position on the x-axis of a planar Brownian motion is Cauchy distributed. In the figure
the random angles Θ1, Θ2 and Θ = Θ1 + Θ2 are shown.

where 

A = 2ω(βγ−αδ)(βδ−αγ)
[ω2(α−β)2+(γ−δ)2][ω2(α+β)2+(γ+δ)2] ,

B = (αγ−βδ)[(γ2−δ2)+ω2(α2−β2)]
[ω2(α−β)2+(γ−δ)2][ω2(α+β)2+(γ+δ)2] ,

C = −A(ω2β2 + δ2),

D = (βγ−αδ)[ω4αβ(β2−α2)+ω2(βγ−αδ)(3αγ−βδ)+γδ(γ2−δ2)]
[ω2(α−β)2+(γ−δ)2][ω2(α+β)2+(γ+δ)2] .

We start by evaluating the first part of the integral (2.8) as∫ ∞
−∞

[
Ay

1 + y2
+

Cy

y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

]
dy

=
A

2

∫ ∞
−∞

[
2y

1 + y2
− 2y(ω2β2 + δ2)± 2ω(βγ − δα)
y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

]
dy

=
A

2
lim

d→∞,c→−∞
log
(

1 + y2

y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

)∣∣∣∣d
c

+Aω(βγ − δα)
∫ ∞
−∞

1
y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

dy

= Aω(βγ − δα)
∫ ∞
−∞

1
y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

dy

= Aω(βγ − δα)
π

ω2αβ + γδ
, (2.9)

where the last integral is obtained by means of the change of variable

y
√
ω2β2 + δ2 +

ω(βγ − δα)√
ω2β2 + δ2

= z

√
ω2α2 + γ2 − ω2(βγ − δα)2

ω2β2 + δ2
= z

ω2αβ + γδ√
ω2β2 + δ2

.
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In view of result (2.9) and inserting the values of A, B and D we have that

dω
π2

∫ ∞
−∞

[
Ay +B

1 + y2
+

Cy +D

y2(ω2β2 + δ2) + 2yω(βγ − δα) + ω2α2 + γ2

]
dy

=
dω
π

1
ω2αβ + γδ

[Aω(βγ − αδ) +B(ω2αβ + γδ) +D]

=
dω
π

[
(γδ + ω2αβ)(βγ − αδ)[ω2(β2 − α2) + (γ2 − δ2)]

(ω2αβ + γδ)[ω2(α− β)2 + (γ − δ)2][ω2(α+ β)2 + (γ + δ)2]

+
(γδ + ω2αβ)(αγ − βδ)[ω2(α2 − β2) + (γ2 − δ2)]

(ω2αβ + γδ)[ω2(α− β)2 + (γ − δ)2][ω2(α+ β)2 + (γ + δ)2]

]
=

dω
π

ω2(β2 − α2)(β − α)(γ + δ) + (γ2 − δ2)(α+ β)(γ − δ)
[ω2(α− β)2 + (γ − δ)2][ω2(α+ β)2 + (γ + δ)2]

=
dω
π

(α+ β)(γ + δ)[ω2(α− β)2 + (γ − δ)2]
[ω2(α− β)2 + (γ − δ)2][ω2(α+ β)2 + (γ + δ)2]

=
dω
π

(α+ β)(γ + δ)
ω2(α+ β)2 + (γ + δ)2

.

�

Remark 2.4. The result of Theorem 2.2 implies that for independent, centered, Cauchy random variables
with scale parameters a1, a2, we have that

Û =
γC1 + δC2

α− βC1C2

i.d.=
γa1C1 + δa2C2

α− βa1a2C1C2

i.d.=
γa1 + δa2

α+ βa1a2
C.

3 Non-Centered Cauchy random variables
For independent Cauchy random variables C1 and C2, with location parameters b1 and b2 and scale
parameters equal to one, the random variable U is still Cauchy distributed with both parameters affected
by the values of the location parameters b1 and b2.

Theorem 3.1. If C1 and C2 are two independent Cauchy random variables with location parameter b and
scale parameter equal to one, then the random variable U is still Cauchy distributed with scale parameter
2b2+4
b4+4 and position parameter 2b3

b4+4 .

Proof
Since Ci

i.d.= Ci + b, i = 1, 2, we have the following relationships which hold in distribution:

U =
C1 + C2

1− C1C2

i.d.=
C1 + C2 + 2b

1−C1C2 − b(C1 + C2)− b2
i.d.=

C1 + C2 + 2b
1−C1C2
C1+C2

− b− b2

C1+C2

1
C1 + C2

i.d.=
1 + 2b

C1+C2

1−C1C2
C1+C2

− b− b2

C1+C2

i.d.=
1 + 2b

2C
1
C − b−

b2

2C

i.d.=
1 + bC

C(1− b2

2 )− b
.

In the steps above we repeatedly used the properties of the standard Cauchy distribution and also The-
orem (2.2).
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These transformations permit us to write down the distribution of U as

1
dω

Pr
{
C1 + C2

1− C1C2
∈ dω

}
=

d
dω

Pr

{
1 + bC

C(1− b2

2 )− b
< w

}
=

d
dω

Pr

{
C >

1 + bw

w(1− b2

2 )− b

}

=
d

dω

∫ ∞
1+bw

w(1− b22 )−b

dx
π(x2 + 1)

=
1
π

b2

2 + 1

[w(1− b2

2 )− b]2 + (1 + wb)2

=
1
π

b2

2 + 1

w2( b44 + 1) + wb3 + b2 + 1
=

1
π

2b2+4
b4+4

w2 + w b3
b4
4 +1

+ b2+1
b4
4 +1
±
(

b2
2 +1
b4
4 +1

)2

=
1
π

2b2+4
b4+4

w2 + w b3
b4
4 +1

+ b2+1
b4
4 +1
−
(

b2
2 +1
b4
4 +1

)2

+
(

2b2+4
b4+4

)2

=
1
π

2b2+4
b4+4[

w + 2b3

b4+4

]2
+
(

2b2+4
b4+4

)2 .

�

Remark 3.1. The result of Theorem 3.1 shows that U has center of symmetry on the positive half-line
if b > 0 and on the negative half-line if b < 0, therefore the non linear transformation U preserves the
sign of the mode.

We have now the following generalization of Theorem 3.1.

Theorem 3.2. If Ci, i = 1, 2, are two independent, Cauchy random variables with location parameters
bi and scale parameters ai, then the random variable U is still Cauchy distributed with scale parameter

aU =
(a1 + a2)(1 + a1a2 − b1b2) + (b1 + b2)(a1b2 + a2b1)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2
,

and position parameter

bU =
(a1 + a2)(a1b2 + a2b1)− (b1 + b2)(1 + a1a2 − b1b2)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2
.

Proof
Observing that Ci

i.d.= aiCi + bi and taking into account result of Theorem 2.2, it follows that

U =
C1 + C2

1− C1C2

i.d.=
a1C1 + a2C2 + b1 + b2

1− a1a2C1C2 − a1b2C1 − a2b1C2 − b1b2
i.d.=

(a1 + a2)C + b1 + b2
1−a1a2C1C2

C1+C2
− (a1b2+a2b1)C

C1+C2
− b1b2

C1+C2

1
C1 + C2

i.d.=
a1+a2

2 + b1+b2
2C

1+a1a2
2C − a1b2+a2b1

2 − b1b2
2C

i.d.=
a1 + a2 + (b1 + b2)C

(1 + a1a2 − b1b2)C− (a1b2 + a2b1)
.
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1
dω

Pr
{
C1 + C2

1− C1C2
∈ dw

}
=

d
dw

Pr
{

a1 + a2 + (b1 + b2)C
(1 + a1a2 − b1b2)C− (a1b2 + a2b1)

< w

}
=

d
dw

Pr
{
C >

w(a1b2 + a2b1) + a1 + a2

w(1 + a1a2 − b1b2)− (b1 + b2)

}
=

1
π

(1 + a1a2 − b1b2)[w(a1b2 + a2b1) + a1 + a2]− (a1b2 + a2b1)[w(1 + a1a2 − b1b2)− (b1 + b2)]
[w(1 + a1a2 − b1b2)− (b1 + b2)]2 + [w(a1b2 + a2b1) + a1 + a2]2

=
(a1+a2)(1+a1a2−b1b2)+(b1+b2)(a1b2+a2b1)

(1+a1a2−b1b2)2+(a1b2+a2b1)2[
w + (a1+a2)(a1b2+a2b1)−(b1+b2)(1+a1a2−b1b2)

(1+a1a2−b1b2)2+(a1b2+a2b1)2

]2
+
[

(a1+a2)(1+a1a2−b1b2)+(b1+b2)(a1b2+a2b1)
(1+a1a2−b1b2)2+(a1b2+a2b1)2

]2 .
�

Remark 3.2. From Theorem 3.2 it is possible to obtain as a particular case the result of Theorem 3.1
by assuming that a1 = a2 = 1 and b1 = b2 = b. For a1 = a2 = a and b1 = b2 = b we have that U is still
Cauchy distributed with scale parameter

aU =
2a(1 + a2 + b2)

(1 + a2 − b2)2 + (2ab)2
,

and position parameter

bU =
2b(a2 + b2 − 1)

(1 + a2 − b2)2 + (2ab)2
.

We note that aU and bU depend simultaneously from the scale and location parameters of the random
variables involved in U .

4 Continued Fractions
The property that the reciprocal of a Cauchy random variable has still a Cauchy distribution has a
number of possible extensions which we deal with in this section.

We start by considering the sequence

V1 =
1

1 + C
, V2 =

1
1 + 1

1+C

, . . . Vn =
1

1 + 1
1+... 1

1+C

, (4.1)

and show the following theorem.

Theorem 4.1. The random variables defined in (4.1) have Cauchy distribution Vn ∼ C(an,bn) where the
scale parameters an and the location parameters bn satisfy the recursive relationships

an+1 =
an

(1 + bn)2 + a2
n

, n = 1, 2, . . . (4.2)

and
bn+1 =

bn + 1
(1 + bn)2 + a2

n

, n = 1, 2, . . . (4.3)

Proof
Let us assume that Vn possesses Cauchy density with parameters an and bn, therefore Vn+1 writes

Pr{Vn+1 < v} = Pr
{

1
1 + Vn

< v

}
= Pr

{
1

1 + an + bnC
< v

}
.

After some computations the density of Vn+1 can be written as

fVn+1(v) =
an

(1+an)2+b2n

π
[
v − bn+1

(1+bn)2+a2
n

]2
+ a2

n

[(1+bn)2+a2
n]2

, v ∈ R.
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It can be directly ascertained that V1 possesses Cauchy distribution with parameters a1 = 1/2 and
b1 = 1/2. �

Remark 4.1. We have evaluated the following table of parameters an and bn:

n 1 2 3 . . . 102

an 1/2 1/5 1/13 . . . 5.77e−42

bn 1/2 3/5 8/13 . . . 0.618034

For n = 1, 2, 3 we can observe that the scale parameters an coincide with the inverse of the odd-indexed
Fibonacci numbers while the sequence bn has the numerators coinciding with the even-indexed Fibonacci
numbers and the denominators correspond to the odd-indexed Fibonacci numbers.

In light of the previous considerations we can show that for n ≥ 1

bn =
F2n

F2n+1
, an =

1
F2n+1

, (4.4)

where Fn, n ≥ 0 is the Fibonacci sequence. Recalling that the Fibonacci numbers admit the following
representation (it can be easily checked by induction)

Fn =
φn − (1− φ)n√

5
(4.5)

where φ = 1+
√

5
2 is the golden ratio, we now prove that if an and bn have the representation in (4.4), then

also an+1 and bn+1 can be expressed in the same form. From (4.2) and (4.3) we have

bn+1 =
F2n
F2n+1

+ 1(
F2n
F2n+1

+ 1
)2

+ 1
F 2

2n+1

=
F2n+2F2n+1

F 2
2n+2 + 1

= F2n+2

[
φ2n+1 − (1− φ)2n+1

φ4n+4 + (1− φ)4n+4 − 2φ2n+2(1− φ)2n+2 + 5

]√
5

= F2n+2

[
φ2n+1 − (1− φ)2n+1

[φ2n+1 − (1− φ)2n+1] [φ2n+3 − (1− φ)2n+3]

]√
5

=
F2n+2

F2n+3
.

Similar calculations prove that an+1 = 1
F2n+3

. In view of representation (4.4) and (4.5), it is easy to show
that

lim
n→∞

bn = lim
n→∞

F2n

F2n+1
= lim
n→∞

1−
(

1−φ
φ

)n
φ− (1− φ)

(
1−φ
φ

)n =
1
φ

= φ− 1, lim
n→∞

an = lim
n→∞

1
F2n+1

= 0.

Otherwise, observing that the sequence bn, n ≥ 1 is increasing, because

bn+1

bn
=
F2n+2F2n+1

F2n+3F2n
=
φ4n+3 + (1− φ)4n+3 + 1
φ4n+3 + (1− φ)4n+3 − 2

≥ 1

and taking the limits in (4.2) and (4.3) we have that

L =
L

(1 +H)2 + L2
, H =

H + 1
(1 +H)2 + L2

, (4.6)
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Figure 5: In the first figure are shown the densities of the Cauchy random variables V1, V2, V3 and V4. In the
second figure the densities of U1, U2, U3 and U4 are plotted.

where H = limn→∞ an and L = limn→∞ bn. From the relationships in (4.6) we derive the equality

L

H
=

L

H + 1

that implies L = 0. In fact, for L 6= 0, we arrive at the absurd that H = H + 1. Substituting L = 0 in
the second formula of (4.6) we obtain

H =
1

H + 1
,

since H satisfies the algebraic equation H2 +H − 1 = 0 it follows that H = φ− 1 where φ is the golden
ratio (see Figure 5(a)).

Remark 4.2. A slightly more general case concerns the sequence

W1 =
1

c1 + d1C(a0,b0)
=

1
c1 + a0d1 + b0d1C

, W2 =
1

c2 + d2W1
, W3 =

1
c3 + d3W2

, . . .

By performing calculations similar to those of Theorem 4.1 we have that W1 has Cauchy distribution
with scale parameter a1 and position parameter b1 such that

a1 =
d1a0

(c1 + d1b0)2 + d2
1a

2
0

, b1 =
c1 + d1b0

(c1 + d1b0)2 + d2
1a

2
0

.

Similarly, if Wn ∼ C(an,bn), than Wn+1 ∼ C(an+1,bn+1) where

an+1 =
dn+1an

(cn+1 + dn+1bn)2 + d2
n+1a

2
n

, bn+1 =
cn+1 + dn+1bn

(cn+1 + dn+1bn)2 + d2
n+1a

2
n

(4.7)

for every n ≥ 2. The sequences in (4.7) for cn = dn = 1 coincide with (4.2) and (4.3).

Another sequence of continued fractions involving the Cauchy distribution is the following one

U1 =
1

1 + C2
, U2 =

1
1 + 1

1+C2

, . . . Un =
1

1 + 1
1+... 1

1+C2

(4.8)
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It is well-known that the random variable U1 possesses the arcsin law. Unlike the sequence Vn studied
above the new sequence Un, n ≥ 1, has a density structure changing with n. Some calculations are
sufficient to show that U1, U2, U3, U4 have density, respectively equal to

fU1(u) =
1

π
√
u(1− u)

, 0 < u < 1,

fU2(u) =
1

πu
√

(1− u)(2u− 1)
,

1
2
< u < 1,

fU3(u) =
1

π(1− u)
√

(2u− 1)(2− 3u)
,

1
2
< u <

2
3
,

fU4(u) =
1

π(2u− 1)
√

(2− 3u)(5u− 3)
,

3
5
< u <

2
3
.

The general result concerning Un is stated in the next theorem.

Theorem 4.2. For every n ≥ 1 the distribution of the random variable Un is given by

Pr{Un ∈ du} =
1

π[(−1)n+1αn + (−1)nβnu]
1√

(−1)nβn + (−1)n+1(αn + βn)u

× 1√
(−1)n+1(αn + βn) + (−1)n(αn + 2βn)u

du, (4.9)

where
(−1)n

αn + βn
αn + 2βn

< (−1)nu < (−1)n
βn

αn + βn
,

and αn, βn ∈ N satisfy the recursive relationships αn = βn−1, βn = αn−1 + βn−1.

Proof
Since from (4.8) we have that

Un+1 =
1

1 + Un
,

proceeding by induction, that is assuming that Un has distribution (4.9), we have that

Pr{Un+1 ∈ du} =
d

du
Pr
{
Un >

1− u
u

}
du =

d
du

∫ h(αn,βn)

1−u
u

Pr {Un ∈ du}

=
1
π

1
u2

1
[(−1)n+1αn + (−1)nβn( 1−u

u )]
1√

(−1)nβn + (−1)n+1(αn + βn)( 1−u
u )

× 1√
(−1)n+1(αn + βn) + (−1)n(αn + 2βn)( 1−u

u )
du

=
1

π[(−1)nβn + (−1)n+1(αn + βn)u]
1√

(−1)n+1(αn + βn) + (−1)n(αn + 2βn)u

× 1√
(−1)n(αn + 2βn) + (−1)n+1(2αn + 3βn)u

du.

In the first integral the function h(αn, βn) represents the right boundary of the support of Un. We con-
clude that Un+1 possesses distribution (4.9) by taking αn+1 = βn and βn+1 = αn + βn. �

Remark 4.3. The sequence βn is a Fibonacci sequence since we have that βn = βn−1 + αn−1 = βn−1 +
βn−2. We note that the sequence of coefficients αn and βn are such that

lim
n→∞

αn+1

βn+1
= lim
n→∞

βn
βn+1

= φ− 1.
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On the base of arguments similar to those of Remark 4.1 it is possible to show that the sequence Un,
n ≥ 1, converges in distribution to φ − 1. In this case the upper and lower bounds of the domain of
definition of the densities fUn(u), n ≥ 1 are expressed as ratios of Fibonacci numbers (see Figure 5(b)).
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