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Abstract

In this paper we consider the problem of locating path-shaped facilities on a tree mini-
mizing the variance objective function. This kind of objective function is generally adopted
in location problems which arise in the public sector applications, such as the location of
evacuation routes or mass transit routes. We consider the general case in which a positive
weight is assigned to each vertex of the tree and positive real lengths are associated to the
edges. We study both the case in which the path is continuous, that is, the end points of the
optimal path can be either vertices or points along an edge, and the case in which the path is
discrete, that is, the end points of the optimal path must lie in some vertex of the tree. Given
a tree with n vertices, for both these problems we provide algorithms with O(n2) time com-
plexity and we extend our results also to the case in which the length of the path is bounded
above. Even in this case we provide polynomial algorithms with the same O(n2) complexity.
In particular, our algorithm for the continuous path-variance problem improves upon a log n

term the previous best known algorithm for this problem provided in [5]. Finally, we show
that no nestedness property holds for (discrete and continuous) point-variance problem with
respect to the corresponding path-variance.

Keywords: Path location, variance criterion, equity measures.

1 Introduction

Network facility location consists of locating facilities in a network in order to supply a set of
costumers. During the last two decades there has been increasing attention to extensive facilities
location models, that is, the location of connected structures such as path-shaped or tree-shaped
facilities [6, 17, 19]. For a comprehensive review see for example [9, 18]. In these models the
objective function is given either by the sum of the distances from each client to its nearest
facility (median criterion), or by the maximum of these distances (center criterion). However,
some authors have considered the problem of finding an optimal location of a path or a tree
using either the two criteria simultaneously or a convex combination of them [1, 3, 14, 15, 16].

∗The research of this author is partially supported by Spanish research grants number: MTM2004:0909.
†The research of these authors is partially supported by the Italian research grants “Azioni Integrate Italia-

Spagna” (number 2.1.4.4.1.15).
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Problem 1 Continuous Discrete

Point Variance O(n) [7] O(n) [10]

Path Variance2 O(n2) O(n2)

Path Variance
with Bounded Length O(n2) O(n2)

Table 1: Summary of results.

In recent years some authors started to study location problems with equity measures as
objective function. The idea is that some salient features of real problems, like the dispersion
of the clients’ demand with respect to a facility, are not captured by the traditional objective
functions. The dispersion measures are strictly related to the variability of the distribution of
the distance from demand points to a facility and they seem to be particularly relevant when
locating facilities in the public sector applications, such as the location of evacuation routes or
the location of a highway in a road network.

A part of the literature devoted to location problems with equity measures is concerned
with providing efficient algorithms for different objective functions. A review of the existing
literature about equity measures in location theory can be found in [8]. Actually, almost all
the papers focusing on equity measures deal with the location of a single point on a network
[7, 10]. However, some papers related to the location of extensive facilities with equity measure
appeared in the recent years: [5] provides a polynomial algorithm for locating a continuous path
of minimum variance on tree networks, that is, the problem of locating a continuous path by
minimizing the variance of the distance travelled by the customers to a facility. In addition,
in [13] a path problem is studied with respect to the range objective function, which is given
by the difference between the maximum and the minimum distance from a facility and to the
Hurwicz objective function, which is given by a convex combination of the maximum and the
minimum distance from the points of the network to the facility. Finally, [4] studies the problem
of locating a path in a tree minimizing the coefficient of variation function, that is, the ratio
between the squared root of the variance and the average distance.

In this paper we study the problem of locating a path-shaped facility on a tree minimizing
the variance objective function. We consider the general case in which a positive weight is
assigned to each vertex of the tree and positive real lengths are associated to the edges. We
consider both the case in which the path is continuous, that is, the end points of the optimal
path can be either vertices or points along an edge, and the case in which the path is discrete,
that is, the end points of the optimal path must lie on some vertex of the tree. Given a tree
with n vertices, for both these problems we provide algorithms with O(n2) time complexity and
we extend our results also to the case in which the length of the path is bounded above. Even in
this case we provide polynomial algorithms with the same O(n2) complexity. In particular, our
algorithm for the continuous path-variance problem improves upon a log n term the previous
algorithm presented in [5] (see Table 1). Moreover, we show that our algorithms can be applied
also for the location of a path with other equity measures related to the variance function, such
as the coefficient of variation.

Furthermore, with respect to the point and the vertex location problem with minimum
variance, we show that the nestedness property does not hold. In fact, we provide two coun-

1Boldfaced results are new results in the paper.
2Nestedness property with respect to the point variance does not hold in any case.
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terexamples showing that the continuous path that minimizes the variance function on a tree
does not necessarily contain the point of minimum variance, and the discrete path that minimizes
the variance function on a tree does not necessarily contain the vertex of minimum variance.

The paper is organized as follows. In Section 2 we introduce the continuous path-variance
problem with unrestricted length and provide a polynomial O(n2) time algorithm for solving
it. The same is done in Section 3 for the discrete version of this problem, while Section 4 is
devoted to the path-variance problems with bounded length. Finally, in Section 5 we draw some
conclusions and provide extensions of our results.

2 The Continuous Path-Variance Problem

We are given a tree T = (V, E) with |V | = n. To each vertex v is associated a positive weight
w(v), while to each edge e = (v, u) is assigned a positive real length `vu. We may assume that
W (T ) =

∑

v∈V w(v) = 1 and interpret each w(v) as the fraction of the population that lives
in vertex v [7]. Given any two points x and y in T that may be vertices or may belong to the
interior of an edge, we denote by d(x, y) the length of the unique path Pxy from x to y. Given
a path Pxy, the sum of the weighted distances from all the vertices of T to Pxy is:

D(Pxy) =
∑

v∈V

w(v)d(v, Pxy)

where d(v, Pxy) is the distance from a vertex v to the path Pxy. Denote by V AR(Pxy) the
variance of a path Pxy which is defined:

V AR(Pxy) =
∑

v∈V

w(v)(d(v, Pxy) − D(Pxy))
2.

By referring to the well-known variance decomposition formula [7] we can re-write V AR(Pxy)
as follows

V AR(Pxy) =
∑

v∈V

w(v)d(v, Pxy)
2 − D(Pxy)

2.

If we denote by Q(Pxy) =
∑

v∈V w(v)d(v, Pxy)
2 the sum of the weighted squared distances, the

above formula becomes:
V AR(Pxy) = Q(Pxy) − D(Pxy)

2.

The Continuous Path-Variance Problem consists of finding the path Px∗y∗ between two points
x∗ and y∗ in T such that V AR(Px∗y∗) ≤ V AR(Pxy), ∀x, y ∈ T . Similarly, the corresponding
Continuous Point-Variance Problem on T can be formulated as the problem of finding the point
x∗ in T such that V AR(x∗) ≤ V AR(x), ∀x ∈ T . The following result shows that the point in T

of minimum variance is not necessarily contained in Px∗y∗ .

Remark 1. Given a tree T , a point x ∈ T that minimizes the variance objective function
is not necessarily contained in a path of minimum variance.

Let us consider the tree in Figure 1. This is the same tree depicted in [7] but with the weight
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assigned to the edge (4, 3) equal to 10 in place of 4. We assign weights equal to 1
8 to each vertex.

By applying the linear time algorithm presented in [7], the point x∗ of minimum variance in T is
located on the edge (4, 3) at a distance d(x∗, 3) = 8.214. The value of the objective function at
x∗ is V AR(x∗) = 14.214. The path that minimizes the variance among all the paths containing
the point x∗ is the one whose end points are located at a distance equal to 2 to vertex 5 and
equal to 2 to vertex 3, and such that its variance is equal to 11.750. The path that minimizes
the variance in T is the path P15 with V AR(P15) = 10.937 This path does not contain the edge
(4, 3) and, consequently, it does not contain the point x∗ of minimum variance.
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Figure 1: An example of a tree where the path of minimum variance does not contain the
minimum variance point.

In our algorithm, for each edge we compute all the paths in T that minimize the variance
and having a starting point in the given edge. In order to do this, consider an edge (r, s), and
let Tr and Ts be the two subtrees obtained by removing (r, s) from T . First suppose to root T

at vertex s and let T (s) = Tr ∪ Ts ∪ (r, s) be the resulting rooted tree. By visiting top down
level-by-level the subtree Tr ⊂ T (s), for each edge (v, u) ∈ Tr we find the path Pxy that mini-
mizes the variance function with x ∈ (r, s) and y ∈ (v, u). Then, we consider r as the new root
of T and, by visiting Ts ⊂ T (r) top down, for each edge (v, u) ∈ Ts we find the path Pxy that
minimizes V AR(Pxy) with x ∈ (r, s) and y ∈ (v, u).

Suppose we are given a path Px̄ȳ where x̄ belongs to the edge (r, s) and ȳ to the edge
(v, u) ∈ Tr (see Figure 2). In a rooted tree we may always assume that v is closer to the root
s than u in T (s). For convenience, we denote by x ∈ (r, s) (y ∈ (v, u)) both the point along
the edge and the distance of the point from r (from v). Given a path Px̄ȳ we have to compute
the squared sum of the weighted distances D(Pxy)

2 of a new path Pxy = Pȳy ∪ Px̄ȳ ∪ Px̄x with
x ∈ (r, s) and y belonging to an edge (u, m) ∈ Tu ⊆ Tr adjacent to the edge (v, u). D(Pxy)

2 can
be computed as follows:

D(Pxy)
2 = [D(Px̄ȳ) − Sav(Pȳy) − Sav(Px̄x)]2

where Sav(Pȳy) and Sav(Px̄x) are the reductions (savings) in the sum of the weighted distances
D(Px̄ȳ) obtained by attaching to the path Px̄ȳ the two paths Pȳy and Px̄x, respectively [11, 12].
In a rooted tree Tr, we denote by W (Tv) =

∑

k∈Tv

w(k) the sum of the weights of the vertices
k belonging to a subtree Tv ⊆ Tr and by D(Px̄ȳ; Tv) the sum of the distances of all the vertices
k ∈ Tv ⊆ Tr from the path Px̄ȳ. We have:

Sav(Pȳy) = d(ȳ, u)W (Tu\Tm) + d(ȳ, y)W (Tm).

Since by definition d(ȳ, y) = d(ȳ, u)+ y, and W (Tu\Tm)+W (Tm) = W (Tu), Sav(Pȳy) becomes:
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Figure 2: Basic elements in the construction of Pxy when visiting Tr ⊂ T (s).

Sav(Pȳy) = d(ȳ, u)W (Tu) + yW (Tm). (1)

Similarly, to compute Sav(Px̄x) we have:

Sav(Px̄x) = (x − x̄)W (Ts). (2)

We note that Sav(Px̄x) may be positive or negative depending on the position on the edge
(r, s) of the new point x with respect to the old point x̄. Hence, the squared sum of the weighted
distances D(Pxy)

2 of the path Pxy can be expressed as a quadratic function of the two (unknown)
points y and x as follows:

D(Pxy)
2 = [D(Px̄ȳ) − d(ȳ, u)W (Tu) − yW (Tm) − (x − x̄)W (Ts)]

2. (3)

Note that in (3) D(Px̄ȳ) − d(ȳ, u)W (Tu) is constant. Moreover, D(Px̄ȳ) is the current value
of the sum of the distances of the path Px̄ȳ, while d(ȳ, u) = `vu − ȳ. The value W (Tv) can be
computed for all the vertices v ∈ T (s) in linear time by visiting bottom up level-by-level the
rooted tree T (s) in a preprocessing phase [2].

Let us now consider the savings in the sum of the weighted squared distances Q(Px̄ȳ) when
we consider the new path Pxy = Pȳy ∪ Px̄ȳ ∪ Px̄x with y belonging to an edge (u, m) ∈ Tu

adjacent to (v, u), and x belonging to (r, s). As before, only the vertices in the two subtrees
Tu ⊆ Tr and Ts are involved in the computation of the savings. In particular, let us consider the
saving obtained when the path Pȳy is added to Px̄ȳ. By considering the vertices in Tu we have:

QSav(Pȳy) =
∑

k∈Tu\Tm

w(k)[d(k, ȳ)2 − d(k, u)2] +
∑

k∈Tm

w(k)[d(k, ȳ)2 − d(k, y)2].
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Since d(k, ȳ) = d(k, u) + d(u, ȳ) for all the vertices k ∈ Tu\Tm, and d(k, ȳ) = d(k, y) + d(ȳ, y) for
all the vertices k ∈ Tm, by substituting in the above formula we obtain:

QSav(Pȳy) = d(u, ȳ)2W (Tu\Tm) + 2d(u, ȳ)D(u; Tu\Tm)

+(d(u, ȳ) + y)2W (Tm) + 2(d(u, ȳ) + y)D(y; Tm)
(4)

with D(y; Tm) = D(m; Tm) + (`um − y)W (Tm).

Let us now consider the saving in the sum of the weighted squared distances of the path Px̄x.
In this case only the vertices in the subtree Ts are involved in the computation. Then we have

QSav(Px̄x) =
∑

k∈Ts

w(k)[d(k, x̄)2 − d(k, x)2].

Since for all the vertices k ∈ Ts we have d(k, x̄) = d(k, x) + (x − x̄), and
∑

k∈Ts

w(k)d(k, x̄) =
D(x̄; Ts), we have:

QSav(Px̄x) = (x − x̄)2W (Ts) + 2(x − x̄)D(x; Ts). (5)

with D(x; Ts) = D(s; Ts) + (`rs − x)W (Ts). Even in this case QSav(Px̄x) can be positive or
negative according to the position of the point x̄ with respect to x. The sum of the weighted
squared distances of the new path Pxy as a function of the two variables x and y is:

Q(Pxy) = Q(Px̄ȳ) − d(u, ȳ)2W (Tu\Tm) − 2d(u, ȳ)D(u; Tu\Tm)

−(d(u, ȳ) + y)2W (Tm) − 2(d(u, ȳ) + y)D(y; Tm)

−(x − x̄)2W (Ts) − 2(x − x̄)D(x; Ts).

(6)

From (3) and (6) follows that the variance of the path Pxy can be written as a function φ(x, y)
of the two variables x and y:

V AR(Pxy) = φ(x, y) = Q(Pxy) − D(Pxy)
2. (7)

As proved in [5], the variance is a strictly convex function on the compact set [0,`rs]×[0,`um].
Thus, the two points y ∈ (u, m) and x ∈ (r, s) can be computed by solving the following system
of linear equations:











∂φ(x,y)
∂x = 0

∂φ(x,y)
∂y = 0

(8)

Note that when the points x and/or y do not belong to the above compact set, they belong to

6



the boundary of the set [0,`rs]×[0,`um]. Hence, similar cases described in [5] must be considered
and, in particular, we have:















x = `rs if x ≥ `rs

x = 0 if x ≤ 0
y = `um if y ≥ `um

y = 0 if y ≤ 0

(9)

For a given pair of edges (r, s) and (v, u) we define a best path Px̄ȳ(v, u) the path of minimum
variance among all the paths Pxy with x ∈ (r, s) and y ∈ (v, u). Given an edge (r, s), with the
previous formulas we are able to compute the best path Px̄ȳ(v, u) for each possible edge (v, u)
of a given rooted tree.
In order to solve the Continuous Path-Variance problem on a tree T , we must also consider the
case in which the optimal path lies within a single edge, including the special case when the
optimal path is a point. For this case we can simply refer to the procedure provided in [5].

In the following we sketch a pseudo-code of the algorithm for solving the Continuous Path-
Variance problem on a tree T .

——————————————————————————————

CONTINUOUS PATH-VARIANCE

Input: A weighted tree T .
Output: A continuous path P ∗ of minimum variance V AR(P ∗) in T .

1. Solve the path-variance problem for each edge e of T (see [5])
and let P (e) be the best path on e and V ar(P (e)) the corresponding variance

2. for each edge e = (a, b) ∈ T

3. Let P ∗
e = Px̄ȳ(a, b) = P (e), with x̄, ȳ ∈ e

4. repeat steps 5-13 for r = a and s = b and for r = b and s = a

5. root the tree T at vertex s and let T (s) be the resulting rooted tree
6. visit T (s) bottom up and compute all the information at all the vertices v ∈ V

7. visit top down level-by-level the subtree rooted at r and let Tr be the rooted tree
8. for each edge (u, m) ∈ Tr

9. find x ∈ (r, s) and y ∈ (u, m) by solving (8) and V AR(Pxy) by using (7)
10. let Px̄ȳ(u, m) = Pxy

11. if V AR(Px̄ȳ(u, m)) < V AR(P ∗
e ) then

12. P ∗
e = Px̄ȳ(u, m)

13. V AR(P ∗
e ) = V AR(Px̄ȳ(u, m))

14. Let P ∗ = argmine{V AR(P ∗
e )}

15. output P ∗ and V AR(P ∗)
——————————————————————————————

Lemma 1. The CONTINUOUS PATH-VARIANCE algorithm finds the path P ∗ of minimum
variance in T .

Proof. It is clear that an optimal path exists in T . Indeed, it is either included in a sin-
gle edge or its end points are contained in two different edges of T . In the first case, the optimal
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path is found at step 1 of the above algorithm by the procedure given in [5]. In the second
case, we can compute the variance of a path Pxy, x ∈ (r, s) and y ∈ (u, m), through formula (7)
where the function φ(x, y) is updated by the saving functions Sav(·) and QSav(·). In both these
savings the quantities that are function of x are independent from those that are function of y.
Thus, given a path Px̄ȳ, for x ∈ (r, s) and y ∈ (u, m), V ar(Pxy) can be correctly updated from
V ar(Px̄ȳ) by computing Sav(·) and QSav(·) with respect to the vertices in the two subtrees
Tu ⊆ Tr and Ts, separately. Since the variance function is strictly convex on the compact set
[0,`rs]×[0,`um] (see [5]), a path that minimizes φ(x, y) among all the paths Pxy with x ∈ (r, s)
and y ∈ (u, m) can be correctly found by solving (8).

Since our algorithm computes the best path Px̄ȳ for all the possible pairs of edges of a given
tree T , it correctly finds a path P ∗ of minimum variance in T . ¤

Lemma 2. The CONTINUOUS PATH-VARIANCE algorithm finds the path P ∗ of minimum
variance in O(n2) time.

Proof. Given a tree T (s) rooted at a vertex s, and for each subtree Tu ⊆ T (s), all the quantities
we use in our algorithm, that is, W (Tu), D(u; Tu), D(u; Tu)2 can be computed once in O(n)
time in a preprocessing phase. The path-variance problem restricted to an edge can be solved
in linear time for all the edges in T . Starting from a path Px̄ȳ, the saving formulas Sav(·)
and QSav(·) can be computed in constant time. The system given by (8) is linear in the two
variables x and y and then it is solvable in constant time. Since the algorithm must be repeated
for all the possible edges (r, s) ∈ T , the overall time complexity is O(n2). ¤

3 The Discrete Path-Variance Problem

In this section we consider the Discrete Path-Variance Problem on a tree. Let T = (V, E) be
a tree with |V | = n. As before, we assume that a positive weight w(v) is associated to each
vertex v ∈ V and a positive real length `vu is assigned to each edge (v, u) ∈ E. Here we
adopt the same notation as before and consider the same assumptions over the weights w(v),
v ∈ V . The Discrete Path-Variance Problem on a tree T consists of finding the path Pv∗u∗

between two vertices v∗ and u∗ in V such that V AR(Pv∗u∗) ≤ V AR(Pvu), ∀v, u ∈ V . Similarly,
the corresponding Discrete Vertex-Variance Problem on T can be formulated as the problem of
finding the vertex v∗ ∈ V such that V AR(v∗) ≤ V AR(v), ∀v ∈ V . In the following, if there is
no possibility of confusion we omit the end points of a path and we simply write P in place of Pvu.

In order to solve the Discrete Path-Variance Problem, we provide an O(n2) algorithm based
on quantities similar to those used in Section 2.

Recall that, given a path P , the sum of the weighted distances from all the vertices of T to
P is denoted by

D(P ) =
∑

v∈V

w(v)d(v, P )

where d(v, P ) is the distance from a vertex v to its closest vertex lying in the path P . According
to this, the variance of a path P is given by

V AR(P ) =
∑

v∈V

w(v)(d(v, P ) − D(P ))2

8



and can always be decomposed into the difference between the weighted sum of the square
distances and the square of the sum of the weighted distances as follows:

V AR(P ) =
∑

v∈V

w(v)d(v, P )2 − D(P )2 = Q(P ) − D(P )2.

Remark 2. Given a tree T , a vertex v ∈ T that minimizes the variance objective function
is not necessarily contained in a discrete path of minimum variance.

Let us consider the tree T in Figure 3. This is the same tree of Figure 1 but with an addi-
tional vertex (numbered by 9). Suppose that we associate to the vertices 1-8 a weight equal
to 1

(8+ε) and to the vertex 9 a weight equal to ε
(8+ε) , ε > 0. If we choose ε = 0.1 the ver-

tex that minimizes the variance is the new vertex 9 with value V AR(9) = 14.861. The path
that minimizes the variance among all the discrete paths that contain vertex 9 is P35, with
value V AR(P35) = 12.888, but the path that minimizes the variance in T is P15 with value
V AR(P15) = 10.806.

1

2

8

6

5

7

4

6

3 2

3

5

4

1.786
9

3

8.214

Figure 3: An example of a tree where the discrete path of minimum variance does not contain
the vertex of minimum variance.

Remark 3 A discrete path P in T that minimizes V AR(P ) does not necessarily have its end
vertices in the leaves of T .

Consider the tree in Figure 4 with 9 vertices, with all edge lengths equal to 1 and all the
weights of the vertices equal to 1

9 . The path P from vertex 1 to vertex 3 is the one that minimizes
the variance objective function.

In our algorithm, given a vertex r, we root the tree at r and compute the variance of all the
paths in T having a starting point in r. Then, by rooting T at each vertex v ∈ V we are able to
find a path Pv∗u∗ of minimum variance among all paths Pvu, v, u ∈ V .

Suppose that the tree T is rooted at a vertex r ∈ V , and let Tr be the resulting rooted tree.
Let Tv be a subtree of Tr rooted at vertex v. Given a path P starting from r to a vertex v, the
squared sum of the weighted distances of a path P ′ = P ∪ (v, u), where u belongs to the set S(v)
of the children of v in Tv can be computed as follows:

9
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Figure 4: The path that minimizes the variance is P13.

D(P ′)2 = [D(P ) − Sav(v, u)]2

where Sav(v, u) is the saving in the sum of the weighted distances D(P ) obtained by attaching
to the path P the edge (v, u) ∈ Tv [11, 12]. We have:

Sav(v, u) = `vuW (Tu)

where W (Tu) is the sum of the weights of all the vertices in Tu. By simple computations, we have:

D(P ′)2 = [D(P ) − Sav(v, u)]2 = D(P )2 + [`vuW (Tu)]2 − 2`vuW (Tu)D(P ). (10)

On the basis of the above formulas, the saving in the squared sum of the distances is given by

D(P )2 − D(P ′)2 = 2`vuW (Tu)D(P ) − [`vuW (Tu)]2. (11)

Let us now consider the saving in the weighted sum of the squared distances when an edge
(v, u) ∈ Tv is attached to the path P obtaining a new path P ′ = P ∪ (v, u). The weighted sum
of the squared distances to path P ′ can always be written as

Q(P ′) =
∑

k/∈Tv

w(k)d(k, P ′)2 +
∑

k∈Tv\Tu

w(k)d(k, v)2 +
∑

k∈Tu

w(k)d(k, u)2

while, for P , it can be written:

Q(P ) =
∑

k/∈Tv

w(k)d(k, P )2 +
∑

k∈Tv\Tu

w(k)d(k, v)2 +
∑

k∈Tu

w(k)d(k, v)2

and
∑

k/∈Tv

w(k)d(k, P ′)2 =
∑

k/∈Tv

w(k)d(k, P )2. Then, we have:

QSav(v, u) = Q(P ) − Q(P ′) =
∑

k∈Tu

w(k)d(k, v)2 −
∑

k∈Tu

w(k)d(k, u)2.
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Notice that the quantity
∑

k∈Tu

w(k)d(k, v)2 can be decomposed as follows

∑

k∈Tu

w(k)(d(k, u) + `vu)2 =
∑

k∈Tu

w(k)d(k, u)2 +
∑

k∈Tu

w(k)`2
vu + 2`vu

∑

k∈Tu

w(k)d(k, u).

It follows that the saving in the weighted sum of the squared distances QSav(v, u) is given by

QSav(v, u) = Q(P ) − Q(P ′) = `2
vuW (Tu) + 2`vuD(u; Tu) (12)

Given a path P from the root r to a vertex v, we denote by TSav(v, u) the total saving in
V AR(P ) obtained by attaching to P the edge (v, u) ∈ Tv. On the basis of formulas (11) and
(12), we have:

TSav(v, u) = V AR(P ) − V AR(P ′) = (Q(P ) − D(P )2) − (Q(P ′) − D(P ′)2)

= (Q(P ) − Q(P ′)) − (D(P )2 − D(P ′)2)

= `2
vuW (Tu) + 2`vuD(u; Tu) − (2`vuW (Tu)D(P ) − [`vuW (Tu)]2).

(13)

Given the rooted tree Tr, start with P = {r}. The value V AR(r) can be easily computed on
the basis of the quantities associated at vertex r in a preprocessing phase. Visit Tr top down
level-by-level; at a given vertex v, for each edge (v, u) ∈ S(v) in Tv compute

V AR(P ∪ (v, u)) = V AR(P ) − TSav(v, u).

In this way in a rooted tree Tr we can compute the variance function for all the paths Prv

from the root r to each other v in Tr by the algorithm described below.

——————————————————————————————

DISCRETE ROOTED PATH-VARIANCE

Input: A tree Tr rooted at a vertex r.
Output: A discrete path P ∗

r of minimum variance among all the paths starting from r.

1. Let P ∗
r = {r} with V ar(P ∗

r ) = V ar(r)
2. visit Tr top down level-by-level
3. for each vertex v ∈ Tr

3. for each vertex u ∈ S(v)
4. let Pru = Prv ∪ (v, u) and V AR(Pru) = V AR(Prv) − TSav(v, u)
5. if V AR(Pru) < V AR(P ∗

r ) then

7. P ∗
r = Pru

6. V AR(P ∗
r ) = V AR(Pru)

8. output P ∗
r

——————————————————————————————

Once we have computed the variance function for all the paths Prv from the root r to each
other vertex v in Tr, we choose the one of minimum variance, say P ∗

r . Then, among all the P ∗
r

for all the possible r ∈ V , we choose a path P ∗ ∈ T that minimizes the variance function.
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Lemma 3. The algorithm finds a discrete path P ∗ in T that minimizes V AR(P ∗) in O(n2) time.

Proof. Given a rooted tree Tr, we can compute V AR(r) in O(n) time. All the other quantities
needed in the computation of the function TSav(·) can be computed once ∀(v, u) ∈ Tr in linear
time in a preprocessing phase. Since the above algorithm must be repeated by rooting the tree
to all the vertices of T , the overall time complexity for finding a path of minimum variance in
T is O(n2).

One may think that by a suitable tree decomposition rule, a dynamic programming approach
can be adopted to solve the Discrete Path-Variance Problem on a tree in order to obtain a better
overall time complexity algorithm. Nevertheless, it seems that here this approach doesn’t work.
Actually, we were not able to find recursive formulas because, given a tree rooted at a vertex v,
it is not possible to obtain a best path passing through or starting from a vertex v by composing
a best path starting from one of its sons u with the edge (v, u). For example, consider the tree
in Figure 1. Suppose to root T at vertex 8, a best path starting from 8 is the path P18, but the
best path starting from vertex 4 is P34.

4 The Path-Variance Problem with Bounded Length

In this section we consider the discrete and continuous path variance problems with an addi-
tional constraint on the length of the path. Given a path P we denote by L(P ) the length of P .
The two problems can be stated as follows:

Continuous Path-Variance Problem with Bounded Length: given a bound B > 0, find the path
Px∗y∗ between two points x∗ and y∗ in T with L(Px∗y∗) ≤ B such that V AR(Px∗y∗) ≤ V AR(Pxy)
∀ x, y ∈ T and L(Pxy) ≤ B.
Discrete Path-Variance Problem with Bounded Length: given a bound B > 0, find the path Pv∗u∗

between two vertices v∗ and u∗ in V with L(Pv∗u∗) ≤ B such that V AR(Pv∗u∗) ≤ V AR(Pvu)
∀ v, u ∈ V and L(Pvu) ≤ B.

A path P is feasible if L(P ) ≤ B. Again we can solve these two problems in O(n2) time
by using the same quantities introduced in the previous sections. In particular, for the discrete
case, since our algorithm considers the paths between all pairs of vertices in T , the length con-
straint can be taken into account simply by checking the length of the path found at each step
of the algorithm. In this way, we may avoid to visit a subtree Tu of the rooted tree, whenever
extending a path P by adding a new edge (v, u) we have L(P ∪ (v, u)) > B.

A similar stopping rule can be applied also in the continuous case. Indeed, recall that, at a
given step of the algorithm, we have a path Px̄ȳ with x̄ belonging to a fixed edge (r, s) and ȳ to
an edge (v, u) ∈ Tr. Assume that L(Px̄ȳ) ≤ B, we must find a new path Pxy, with x ∈ (r, s) and
y belonging to an edge (u, m) ∈ Tu ⊆ Tr adjacent to (v, u), such that L(Pxy) ≤ B, and which
minimizes the variance. In order to do that, let us consider the path Pru, if L(Pru) ≥ B we may
avoid visiting the subtree Tu. When L(Pru) < B we can find the new path Pxy by solving the
following quadratic programming problem:
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Min φ(x, y)
s.t.

x + y ≤ B′

0 ≤ x ≤ `rs

0 ≤ y ≤ `um

(14)

where B′ = B − L(Pru) and φ(x, y) is defined by formula (7). In the following, we refer to
the optimal solution of this problem by (x̃, ỹ).

In order to solve the Continuous Path-Variance Problem with Bounded Length on a tree T ,
we compute the best feasible paths for all the possible pairs of edges of T . However, we must
also consider the case in which the optimal path lies within a single edge. For this case we
refer to the notation used in [5], and for each edge (r, s) ∈ T , we solve the following quadratic
programming problem:

Min V AR(Pz1z2
)

s.t. z1 + z2 ≤ `rs

z1 + z2 ≥ `rs − B

z1, z2 ≥ 0

(15)

where, according to [5], V AR(Pz1z2
) is given by

V AR(Pz1z2
) = W (Tr)W (Ts)z

2
1 + W (Tr)W (Ts)z

2
2

−2W (Tr)W (Ts)z1z2 + 2{D(r; Tr) − W (Tr)D(Prs)}z1

+2{D(s; Ts) − W (Ts)D(Prs)}z2 + V AR(Prs) = W (Tr)W (Ts)[z1 − z2]
2

+2{D(r; Tr)W (Ts) − D(s; Ts)W (Ts)}[z1 − z2] + V AR(Prs)

and z1 and z2 in (r, s) denote both the points along the edge and the distance from r and s,
respectively.

In the following we sketch a pseudo-code of the algorithm for solving the Continuous Path-
Variance problem with Bounded Length on a tree T .
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——————————————————————————————

BOUNDED CONTINUOUS PATH-VARIANCE

Input: A weighted tree T and a bound B > 0.
Output: A continuous path P ∗ of minimum variance V AR(P ∗) in T with L(P ∗) ≤ B.

1. Solve the path-variance problem for each edge e of T by (15)
and let P (e) = Pz1z2

be the best feasible path on e with V ar(P (e)) = V ar(Pz1z2
)

2. for each edge e = (a, b) ∈ T

3. Let P ∗
e = Px̄ȳ(a, b) = P (e), with x̄, ȳ ∈ e

4. repeat steps 5-20 for r = a and s = b and for r = b and s = a

5. root the tree T at vertex s and let T (s) be the resulting rooted tree
6. visit T (s) bottom up and compute all the information at all the vertices v ∈ V

7. visit top down level-by-level the subtree rooted at r and let Tr be the rooted tree
8. for each edge (u, m) ∈ Tr

9. if u ≡ r

10. solve (14) and let x̄ = x̃, ȳ = ỹ and V AR(Px̄ȳ(u, m)) = φ(x̃, ỹ)
11. if V AR(Px̄ȳ(u, m)) < V AR(P ∗

e ) then

12. P ∗
e = Px̄ȳ(u, m)

13. V AR(P ∗
e ) = V AR(Px̄ȳ(u, m))

14. else

15. if L(Pru) ≥ B STOP visiting Tu

16. else

17. solve (14) and let x̄ = x̃, ȳ = ỹ and V AR(Px̄ȳ(u, m)) = φ(x̃, ỹ)
18. if V AR(Px̄ȳ(u, m)) < V AR(P ∗

e ) then

19. P ∗
e = Px̄ȳ(u, m)

20. V AR(P ∗
e ) = V AR(Px̄ȳ(u, m))

21. Let P ∗ = argmine{V AR(P ∗
e )}

22. output P ∗ and V AR(P ∗)
——————————————————————————————

The above algorithm finds a path P ∗ in T of minimum variance V AR(P ∗) with L(P ∗) ≤ B

in O(n2). It is easy to check that it has the same time complexity of the CONTINUOUS PATH-
VARIANCE algorithm since solving the two quadratic programs (14) and (15) requires constant
time.

5 Concluding Remarks

In this paper we considered the Path-Variance problem on trees both in the continuous and in
the discrete case. For the two problems we provided two O(n2) time algorithms. In particular,
the algorithm for the continuous Path-Variance problem improves upon a log n term the previous
algorithm presented in [5]. We showed that the path that minimizes the variance function on
a tree T does not necessarily contain the point of minimum variance in T . We also showed
that this nestedness property does not hold even for the vertex that minimizes the variance in
T in the discrete case. The common idea of the two algorithms is that, by visiting top down
level-by-level a rooted tree, we can efficiently compute all the paths that minimize the variance
among those having a starting point in a given edge in the continuous case, or at a given vertex

14



in the discrete case. The computation of the variance for all these paths is done by introducing
saving functions. Exploiting the decomposition of the variance formula, these functions allow
to update the variance objective function when a new path P ′ is obtained from a given path P

efficiently. We extended our algorithms to the case with an additional constraint on the length
of the path, and we maintain the same overall time complexity of O(n2).

As discussed in the Introduction, the variance function is a common measure of equity in
location theory which is often used when the dispersion of the clients’ demand with respect to
a facility must be considered. Another interesting dispersion measure is given by the coefficient

of variation which has the nice property of being independent from scaling factors. We noticed
that we can use our algorithms to solve the problem of finding a continuous or discrete path in
a tree which minimizes the coefficient of variation, too. In particular, for the continuous case,
in [4] is proved that, given two edges (r, s) and (v, u), the coefficient of variation, expressed as a
function of the variables x ∈ (0, `rs) and y ∈ (0, `vu), is a pseudo-convex function with respect to
the open set (0, `rs)× (0, `vu). This suffices for applying our algorithms also for these problems.
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