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Abstract

In clinical practice we are usually interested in showing that an innovative therapy
is more effective than a standard one. However, in some cases we have to respond
to different purposes, such as proving equivalence of two competing treatments. In
this paper we deal with sample size determination (SSD) for equivalence trials. The
first step is the definition of an equivalence interval I, that is a set of values of the
parameter of interest indicating a negligible difference between treatments effects.
Hence, we declare success if an interval estimate of θ is entirely included in I. By
adapting the metodology presented in Brutti and De Santis (2008) to equivalence
trials, we derive two alternative SSD criteria based on Bayesian credible intervals and
we also introduce their robust version with respect to prior distribution specification.
In this work we provide results for the normal model with conjugate priors and we
illustrate an application, based on a real example by Spiegelhalter et al. (2004).

1 Introduction

An equivalence trial is designed to confirm the absence of a meaningful difference between
treatments. For example, when a pharmaceutical company is aware that there is not pre-
experimental evidence enough for demonstrating superiority of a new treatment, it can
decide to prove that it is equivalent to the standard one. The idea is that the new drug
has chances to be approved and put on the market if it guarantees additional advantages,
for instance in terms of safety or costs.

In the case of two alternative treatments let us suppose that the parameter of interest, θ,
is the unknown difference (on a specific scale) between two treatment effects. As suggested
in a recent document by the European Agency for the Evaluation of Medicinal Products
(CPMP/EWP/482/99 (2000)), in this setting it is more informative to conduct the analysis
by means of an interval estimate for θ, although there are closely related methods using
significance test procedures (as described, for example, in Julious (2004)). Specifically, first
of all we define an interval of values of θ representing indifference (that is the equivalence
interval I = [θI , θS ]). Then, we declare equivalence if an interval estimate of θ entirely
lies within I. This situation is schematically represented in Figure 1.

Note that equivalence bounds may be chosen either symmetrically or asymmetrically
with respect to the value denoting no treatment difference (typically zero). There are in
practice some difficulties associated with its specification, but a detailed discussion on this
point goes beyond the scope of the present work.

1



0

equivalence 
shown

equivalence 
not shown

treatment difference
sI

Figure 1: Equivalence trials

As discussed in Spiegelhalter et al. (2004), from a Bayesian perspective it is straight-
forward to define a region of equivalence and calculate the posterior probability that the
treatment difference lies in this region. There is a large statistical literature on trials
designed to establish equivalence between therapies using a Bayesian methodology: see
for example Selwyn et al. (1981), Fluehler et al. (1983), Selwyn & Hall (1984), Breslow
(1990), Grieve (1991) and Baudoin & O’Quigley (1994). A decision theoretic formulation
is proposed in Lindley (1998): this approach is not considered in the present paper and in
general it can give radically different conclusions, as noted in Spiegelhalter et al. (2004).

In this work we focus on the framework of an equivalence trial, with particular reference
to the aspect of sample size determination (SSD). In Gould (1993) a Bayesian methodology
for determining the sample sizes for event rate equivalence trials is proposed. Trials for
demonstrating the equivalence of active standard and test treatments generally require
large sample sizes that depend on the definition of equivalence and on the overall event
rate, when the outcome is incidence of an event such as mortality. Planning of sample
sizes for such trials requires the specification of a value for the overall event rate. This
design value will often reflect the outcomes of previous trials of the standard treatment,
and it is subject to uncertainty that needs some accommodation, to protect against an
inadequate sample. For this reason the Author suggests to use Bayes and Empirical Bayes
methods to incorporate information from one or more previous trials into the sample size
calculation when equivalence means high confidence that the event rate ratio is less than
some specified value.

In this paper we propose a predictive SSD approach, based on Bayesian credible inter-
vals, by adapting the metodology presented in Brutti & De Santis (2008) to equivalence
trials. The idea is to choose the minimum value of the sample size that guarantees to have
the posterior credible interval of θ included in the equivalence interval. Since the interval
limits are random quantities before the trial, we need to control the predictive distribution
of the posterior credible interval bounds.

More specifically, we consider the two priors approach, first introduced in Tsutakawa
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(1972) and Etzioni & Kadane (1993) within the Bayesian SSD methodologies and subse-
quently formalized by Wang & Gelfand (2002). According to this approach pre-experimental
information is represented by the analysis prior, whereas uncertainty on the hypothesized
parameter value at the design stage value is modeled by the so-called design prior. Note
that, in general, design and analysis prior distributions do not coincide. This has been
motivated and discussed in several papers, see for instance Wang & Gelfand (2002), Sahu
& Smith (2006), De Santis (2006), O’Hagan & Stevens (2001), Brutti & De Santis (2008),
Brutti et al. (2008). Here we do not go into further details of the discussion, but we adopt
the two priors approach in defining the predictive SSD criteria, as described above: in par-
ticular the posterior distribution that we need to compute the credible intervals is based
on the analysis prior, while the predictive distribution is induced by the design prior.

Moreover we deal with the issue of robustness with respect to the specification of a single
analysis prior which is usually one of the major criticism towards Bayesian methods. The
basic idea and motivations are discussed in De Santis (2006), Brutti & De Santis (2008)
and Brutti et al. (2008). A robust version of the above criteria is obtained by replacing
the analysis prior with a suitable class of prior distributions and referring to the bounds of
the credible interval limits as the prior varies in the class that we call robust bounds. Due
to the additional amount of uncertainty accounted for on the analysis prior, the resulting
optimal sample sizes are larger than those obtained using a single prior, as shown in
the application. Hence, it is interesting to quantiy the impact of misspecification of the
analysis prior in terms of increase of the resulting sample sizes.

The outline of this paper is as follows. In Section 2.1, after describing the general setting
of equivalence trials and introducing some notation, we present the Bayesian predictive
SSD criteria. The robust criteria are then derived in Section 2.2. In Section 3 we provide
results for the normal model with conjugate priors, using classes of restricted conjugate
priors for the robust approach. Examples are illustrated and discussed in Section 4, with
reference to the framework of a clinical trial analyzed in Spiegelhalter et al. (2004).

2 Predictive Bayesian approach to SSD

In the present section, we describe in details the setting of equivalence trials. Then we
introduce the Bayesian SSD methodology. Let us suppose that the unknown parameter
θ represents a measure of comparison between two alternative treatments, such as for
instance the effects difference, the odds ratio or the hazard ratio. As anticipated in the
Introduction, we consider an equivalence interval I = [θI , θS ], that is a set of parameter
values indicating a negligible difference between two competing treatments. We claim that
the experiment is considered successful if it provides evidence that θ ∈ I, i.e. if an interval
estimate of θ is entirely included into the equivalence interval.
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Furthermore let us assume that pre-experimental information on θ is available. For
instance we may want to take into account information provided by results of a previous
study or opinions of some expert clinicians about the experimental treatment. Follow-
ing the Bayesian approach, initial information can be formalized by specifying a prior
probability distribution πA for θ.

Let us consider the random sample Yn = (Y1, ..., Yn), where Yi is the random variable
associated to treatments comparison, f(·; θ) denotes its density or probability distribution
function and n a prefixed number of patients to be recruited. Once the trial has been
performed, the observed sample yn = (y1, ..., yn), which is a realization of Yn, is available.
Denoting the corresponding likelihood by f(yn; θ), inference is then based on the posterior
distribution that follows from Bayes theorem:

πA(θ|yn) =
πA(θ)f(yn; θ)
mA(yn)

(1)

where the denominator is the marginal distribution mA(yn) =
∫

Θ πA(θ)f(yn; θ)dθ and
Θ denotes the parameter space. Let us assume for the sake of simplicity a unimodal
continuous prior distribution. Given the posterior distribution of (1), we focus on the
(1− α) credible interval for θ, that is

Cα(yn;πA) = [ln(yn;πA), un(yn;πA)] , (2)

where ln(yn;πA) and un(yn;πA) are the inferior and superior limit of the interval respec-
tively. Note that Cα(yn;πA) can be for instance a HPD interval or an equal-tail interval.
Finally the definition of success can be formalized as follows: we declare equivalence if

Cα(yn;πA) ⊆ I,

that is if the following conditions

ln(yn;πA) > θI and un(yn;πA) < θS (3)

are simultaneously satisfied.

2.1 Criteria

Before the experiment is carried out, the limits of the posterior credible interval are random
quantities, denoted by ln(Yn;πA) and un(Yn;πA) to underline their dependence on the
random sample Yn.

Thus, we need to take into account the randomness of the data using their marginal
distribution. Adopting a conditional approach to SSD, it is possible to prefix a design value
θD, that is a guess value for the parameter representing the objective of the experiment or,
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in other words, the target effect to be detected. For an equivalence trial θD must be chosen
inside the equivalence interval. For instance we could set θD = 0 if I is symmetrical with
respect to zero. In this case SSD criteria would be based on the sampling density fn(·; θD).
However, according to a predictive approach, it is possible to model uncertainty on θD by
specifying a design prior distribution πD for θ. The design prior is used to average the
sampling distribution, yielding the predictive distribution

mD(yn) =
∫
θ
f(yn; θ)πD(θ)dθ. (4)

Notice that the sampling distribution of the data fn(·; θD) arises as a special case of mD(·)
when a point-mass design prior on the single value θD is chosen. In this sense mD(·)
generalizes fn(·; θD).

Now, from (3) we know that the success of the experiment relies on two simultaneous
conditions: this reflects in the definition of the following criteria, based on predictive
summaries of both ln(Yn;πA) and un(Yn;πA). In particular we have:

1. Predictive Expectation Criterion.

Let
eln = EmD [ln(Yn;πA)] and eun = EmD [un(Yn;πA)] (5)

be the predictive expected value of Cα(yn;πA) limits, computed with respect to the
marginal mD. The optimal sample size n∗e is then selected as the minumum n such
that the expected limits of the credible interval fall into the equivalence interval:

n∗e = min{n ∈ N : eln > θI and eun < θS} (6)

2. Predictive Probability Criterion.

Based on the marginal mD we define the predictive probability that the inferior limit
is larger than θI and that the superior limit is smaller than θS , i.e.

pl,un = PmD [ln(Yn;πA) > θI , un(Yn;πA) < θS ] (7)

Then, given a threshold γ ∈ (0, 1), we select the optimal sample size n∗p as the
minumum n such that this probability is reasonably large, namely

n∗p = min{n ∈ N : pl,un > γ}. (8)

2.2 Robust criteria

Bayesian statistics is usually criticized because of the subjectivism due to the use of a
specific prior distribution for posterior analysis. An attempt to address this objection
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is represented by the robust Bayesian approach that is based on the following idea. In
order to account for unavoidable uncertainty on pre-experimental information, the single
prior is replaced by a whole class of distributions containing πA. Then we compute the
range of posterior quantities of interest over the selected class. If the posterior range is
small, differences between distinct priors of the class are irrelevant and it is possible to
use the starting prior with confidence. Otherwise, robustness is of concern and extra care
is required. The robust approach can be adopted also for SSD. See for instance De Santis
(2006), Brutti & De Santis (2008), Brutti et al. (2008).

In practice, in order to define a robust version of the SSD criteria introduced in Section
2.1, we replace πA with a class of prior distributions ΓA. Then we consider robust bounds
of the posterior credible interval:

Ln(Yn; ΓA) = inf
πA∈ΓA

ln(Yn;πA) and Un(Yn; ΓA) = sup
πA∈ΓA

un(Yn;πA), (9)

where Ln(Yn; ΓA) is the lower bound of ln(Yn;πA) and Un(Yn; ΓA) is the upper bound
un(Yn;πA) as the prior πA varies in ΓA. Therefore we have robust evidence that θ belongs
to I if Ln(Yn; ΓA) > θS and Un(Yn; ΓA) < θI , i.e. if we have Cα(yn;πA) ⊆ I for any
prior πA ∈ ΓA. Taking into account the double condition on both the robust bounds, we
immediately derive the robust optimal sample sizes n∗e,r and n∗p,r for equivalence trials.

1. Robust Predictive Expectation Criterion:

n∗e,r = min{n ∈ N : eLn > θI and eUn < θS} (10)

where

eLn = EmD [Ln(Yn; ΓA)] and eUn = EmD [Un(Yn; ΓA)] (11)

2. Robust Predictive Probability Criterion: Given γ ∈ (0, 1),

n∗p,r = min{n ∈ N : pL,Un > γ} (12)

where

pL,Un = PmD [Ln(Yn; ΓA) > θI , Un(Yn; ΓA) < θS ] . (13)

The consequence of replacing πA with ΓA (which we assume to contain πA), is that, in
general, robust sample sizes are larger than single-prior sample sizes. Similarly, for any
two classes of priors ΓA and Γ′A such that ΓA ⊂ ΓA′ , optimal sample sizes determined with
the latter class are larger than those obtained with the former. This will be illustrated in
a practical application in Section 4, assuming the normal model with classes of restricted
conjugate priors.
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3 Results for the normal model

Let us assume that the data relevant to θ are summarized by a statistic Yn with normal
distribution of parameters (θ, σ2/n). Let us denote its observed value with yn. This
notation is used for the sake of simplicity, being evident the distinction with the symbol
denoting the n−th component of the random sample Yn and of the observed sample yn

respectively. With no loss of generality, we consider a scale for the parameter θ, with θ = 0
denoting equivalence. Note that this basic model provides an approximation that can be
used, for instance, for binary data – with θ denoting the log odds ratio – and for survival
data – with θ denoting the log hazard ratio – (see Spiegelhalter et al. (2004) and Section 4
for an application). Moreover for computational simplicity we adopt here conjugate prior
distributions. Thus we assume that πA is a normal density with expected value θA and
variance σ2/nA, where nA is the prior sample size (adopting the notation of Spiegelhalter
et al. (2004)). From standard Bayesian conjugate analysis it follows that the resulting
posterior distribution is

πA(θ|yn) = N

(
θ|nAθA + nyn

nA + n
,

σ2

nA + n

)
For a given yn, the posterior credible interval limits are

ln(yn;πA) =
nyn + nAθA
n+ nA

− z1−α/2
σ√

(n+ nA)

un(yn;πA) =
nyn + nAθA
n+ nA

+ z1−α/2
σ√

(n+ nA)
, (14)

where z1−α/2 is the 1− α/2 standard normal quantile.

Furthermore we assume that the design prior is πD(θ) = N(θ|θD, σ2/nD); according to
equation (4), the predictive distribution induced by πD is a normal density of parameters
(θD;σ2(1/n+ 1/nD).

Since the objective of the trial is equivalence, the design prior is chosen to assign high
probability to the equivalence interval values. For simplicity, in the following we set θD
equal to the central value of the equivalence interval (for example θD = 0, if I is centered
on 0). On the other hand the analysis prior parameters are specified in order to model pre-
experimental information on θ. Hence, πA can be centered either on negative or positive
values expressing respectively scepticism and enthusiasm towards one of the competing
treatments. For example, let us suppose that a pharmaceutical company attempts to
put a new drug on the market. The regulatory committee plans a clinical trial to show
that the new drug is actually equivalent to the standard one. This yields an equivalence
study with an optimistic analysis prior mean θA > 0 and a design prior centered on 0.
On the contrary, let us imagine that a pharmaceutical company wants to show that its
new treatment is equivalent to a competing one, in terms of efficacy. This happens, for
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instance, when the company, being aware that there is not evidence enough for proving
superiority, aims at showing equivalence. Then the new drug has chances to be approved
if it guarantees some other advantages, such as, for example in terms of safety or costs.
In this case the design prior mean θD = 0 represents the objective of the company, while
the analysis prior expresses the opinion of an opponent, possibly fictitious. Note that
in both situations the two-priors approach mentioned in Section 1 allows us to formalize
two different points of view about the treatments difference (for further discussion on this
interpretation see Etzioni & Kadane (1993)).

3.1 Criteria

It is now straighforward to compute the predictive quantities involved in the SSD criteria
defined in Section 2.1. We have respectively:

1. eln = EmD [ln(Yn;πA)] =
nθD + nAθA
n+ nA

− z1−α/2
σ√

(n+ nA)

eun = EmD [un(Yn;πA)] =
nθD + nAθA
n+ nA

+ z1−α/2
σ√

(n+ nA)

2. pl,un = PmD [ln(Yn;πA) > θI , un(Yn) < θS ] =

= Φ

θS(n+ nA)− z1−α/2σ
√
n+ nA − nAθA − nθD

nσ
√

1
n + 1

nD

−
− Φ

θI(n+ nA) + z1−α/2σ
√
n+ nA − nAθA − nθD

nσ
√

1
n + 1

nD

 ,

where Φ(·) is the standard normal cumulative distribution function.

3.2 Robust criteria

Let us suppose to replace the single analysis prior πA with a class of distributions. For
the sake of simplicity, we focus here on the class of restricted conjugate priors, defined as

ΓRC = {N(θ|θA, σ2/nA);nA ∈
[
nLA, n

U
A

]
⊂ R+}.

Under this assumption, we can exploit the results derived in Brutti & De Santis (2008)
for computing the robust bounds of the credible interval in (9) and eLn and pLn , using the
marginal distribution mD. We recall these results in Appendix A, where we also derive
analogous expressions for eUn and pUn . It is then immediate to apply the robust criteria
defined in (10) and (12).
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In next section we illustrate an application of the presented methodology, comparing
the results obtained using robust and non robust criteria.

4 Example: CHART

The example considered in this paragraph is based on the CHART trial, first presented in
Parmar et al. (1994) and further analysed in Parmar et al. (2001) and Spiegelhalter et al.
(2004). Specifically we exploit the experimental setting described in Spiegelhalter et al.
(2004) to elicit prior distributions and necessary clinical parameters required to plan an
hypothetical equivalence trial, in order to draw a realistic design scenario. Then we revert
the point of view of the original trial whose objective was superiority (see Spiegelhalter
et al. (2004)).

First of all, let us review the general context of the CHART trial. In 1986 a new
radiotherapy technique known as continuous hyperfractionated accelerated radio therapy
(CHART) was introduced. The goal was to administrate radiotherapy continuously (no
weekend breaks), in many small fractions (three a day) and accelerated (the course com-
pleted in 12 days), which clearly implies considerable logistical problems. Thus, the Med-
ical Research Council wanted to compare CHART with conventional radiotherapy in lung
cancer, to assess whether CHART provided a clinically important difference in survival
that compensated for any additional toxicity and problems of delivering the treatment.
The results were presented in terms of hazard ratio (HR), defined as the ratio of the hazard
under CHART to the hazard under standard treatment. Hence, HRs less than one indicate
superiority of CHART. In Spiegelhalter et al. (2004) a proportional hazards model is used,
providing an approximate normal likelihood for the log HR: the estimated log HR has a
normal density of expected value θ and variance σ2/n, where n is the equivalent number
of events in a trial balanced in recruitment and follow-up.

In order to specify the prior distribution and the equivalence interval the opinion of
expert clinicians was considered. At the beginning, clinicians were enthusiastic about
CHART. However oncologists who declined to participate in the trial expressed consider-
able scepticism. Opinions of eleven experts were collected and Spiegelhalter et al. (2004)
suggest to average the corresponding distributions, obtaining as a summary a normal prior
density centered on −0.28 with standard deviation of 0.23 (corresponding to an estimated
HR of 0.76 with 95% interval from 0.48 to 1.19), which implies nA = 74.3. Furthermore
a sceptical prior was derived (see again Spiegelhalter et al. (2004)) with prior mean 0
and precision such that the prior probability that the true benefit exceeds the alternative
hypothesis is 5%. This corresponds to a prior sample size nA = (1.65σ/θA)2 = 110, noting
that θA = log(0.73) = −0.31 and σ = 2. The eleven clinicians were also asked to specify
the equivalence interval, namely “a range where they felt the two regimens were approxi-
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mately equivalent”. Upper and lower bounds for the equivalence intervals were averaged
and the following results were obtained. The participants would be willing to use CHART
routinely if it conferred at least 13.5% improvement in 2-year survival (from a baseline of
15%), and unwilling if less than 11% improvement. Thus the equivalence interval is from
11% to 13.5%, that is on the HR scale from 0.66 to 0.71, or on the log(HR) scale from
-0.41 to -0.34.

However, in this case the above equivalence interval turns out to be too restrictive even
if we choose a highly concentrated design prior on the central value of I, for instance a
normal density of mean −0.375 and standard deviation 0.067, with nD = 898 (see Figure
??). For instance, adopting the SSD criterion defined in (6), we obtain very large values
for the optimal sample size – larger than 10000 units, which is absolutely unrealistic.
Hence, with an illustrative intent we reset here the equivalence interval, in the light of
the different purpose of the study. Let us imagine to assume the point of view of the
CHART opponents: given the logistic problems connected with CHART, the supporters
of the standard treatment could consider appropriate a wider interval, for instance from
5% to 15%, corresponding to (−0.455;−0.164) on the log HR scale. In this case we
manage to obtain smaller values for the optimal sample sizes, even if we specify a less
demanding design prior, centered in θD = −0.3095, and allowing for more uncertainty
(nD = 51.9, yielding a standard deviation of 0.278): the resulting optimal sample sizes
are respectively n∗e = 682 in correspondence of the clinical analysis prior and n∗e = 1037
in correspondence of the sceptical analysis prior. Similar considerations apply when we
consider the predictive probability criterion defined in (8): the original equivalence interval
actually results unpractical (larger than 10000 units) and the optimal sample sizes are still
too large when considering I = [θI , θS ] (around 1000 units for a threshold γ = 0.5).

One may argue these conclusions are not satisfying yet from a practical point of view.
Thus, we can change again our perspective and consider a less restrictive equivalence
interval, for instance I = [−0.41, 0.41]. Note that we keep the lower bound of the previous
interval and we make it symmetrical with respect to θ = 0, ehich corresponds to no
treatment difference: hence, we consider positive differences (on the log HR scale) as
important as negative ones. Furthermore, let us assume a design prior of parameters
θD = 0 and nD = 100. These design assumptions are represented in Figure 2, together
with two choices for the analysis prior distribution. On the one hand the clinical prior –
πA(θ) = N(θ|θA = −0.28, nA = 74.3) – is optimistic towards the superiority of CHART:
thus, it can be interpreted as the point of view of a supporter of the innovative therapy,
that we are willing to deny by proving equivalence of the two treatments. On the other
hand the sceptical prior – πA(θ) = N(θ|θA = 0, nA = 50) – is centered on the equivalence
interval, expressing a neutral opinion with respect to the treatment comparison.

Figure 3 represents the predictive expectation of the posterior credible intervals as n
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Figure 2: Clinical analysis prior (dashed line) with θA = −0.28 and nA = 74.3, sceptical analysis prior

(dashed-dotted line) with θA = 0 and nA = 50, design prior (continuous line) with θD = 0 and nD = 100

and equivalence interval (dotted area) θI = −0.41 and θS = −0.41

increases: the optimal sample size is chosen in correspondence to the first interval limits
(circled) falling into the equivalence interval (parallel dotted lines). In Figure 4 we show the
behaviour of the predictive probability pl,un (continuous line) with respect to n and we pick
the n∗p as the smaller value of n corresponding to a larger probability than the threshold
γ (for instance, γ = 0.6). Given the above design assumptions, adopting the predictive
expectation and the predictive probability criterion, we have respectively n∗e = 105 and
n∗p = 182 for the clinical prior and n∗p = 207 and n∗e = 42 for the sceptical prior.

Moreover in Table 1 we show the impact on the optimal sample sizes of different choices
of the prior parameters (results corresponding to the above mentioned analysis priors are
bolded). It is evident that, for a given analysis prior expectation, the larger nA the
smaller the optimal sample size. Conversely, given the prior variance, as θA approaches 0
the optimal sample sizes take smaller values. Note that a similar behaviour would result
by considering positive values of θA decreasing towards 0, due to the symmetry of the
equivalence interval. This can be interpreted as follows: both entusiastic and sceptical
prior opinions on the innovative therapy require the same effort, in terms of experimental
units, to be denied in demostrating equivalence.

Finally, note that in Figures 3 and 4 robust SSD criteria are also represented. As for
the predictive expectation criterion (Figure 3), the gray vertical segments represent the
expected robust credible intervals with respect to n with prefixed nLA and nUA. For example,
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Figure 3: Robust and non robust SSD using the predictive expectation criterion using the clinical

analysis prior (top panel) and the sceptical analysis prior (bottom panel), given the equivalence interval

[−0.41,−0.41] and design prior parameters θD = 0 and nD = 100.
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Figure 4: Robust and non robust SSD using the predictive predictive probability criterion using the

clinical analysis prior (top panel) and the sceptical analysis prior (bottom panel), given the equivalence

interval [−0.41,−0.41], the sceptical analysis prior and design prior parameters θD = 0 and nD = 100.
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n∗e n∗p
nA

θA 10 30 50 74.3 90 10 30 50 74.3 90

-1.00 126 183 233 290 325 307 299 323 370 405
-0.50 105 126 145 164 176 303 267 245 236 239
-0.28 95 100 103 105 105 303 259 220 182 165
-0.20 91 89 86 82 78 302 257 214 165 139
-0.10 87 76 65 51 42 302 256 208 150 112
0.00 82 62 42 18 2 302 255 207 144 100

Table 1: Optimal sample sizes for equivalence interval [−0.41, 0.41], with design parameters
θD = 0, nD = 100 for several choices of the analysis prior parameters, using both the
predictive expectation criterion and the predictive probability criterion (with γ = 0.6).

given (nLA = 10, nUA = 200) the optimal robust sample sizes (indicated by a star) are
respectively n∗e,r = 145 for the clinical analysis prior and n∗e,r = 91 for the sceptical one. Of
course, if we consider a smaller class we obtain optimal sample size uniformly closer to the
non robust ones: for instance, for (nLA = 30, nUA = 100) we have n∗e,r = 122 for the clinical
analysis prior and n∗e,r = 67 for the sceptical one. In Figure 4 the dashed line represents
the probability that the robust bounds of the credible interval fall into the equivalence
interval, as defined in (7)), using the restricted conjugate class with (nLA = 10, nUA = 200).
The optimal sample sizes (indicated by a star) are obviously larger than the non robust
ones: in particular, we have n∗p,r = 261 for the clinical analysis and n∗p,r = 263 for the
sceptical one. Again, if we consider a narrower class, with (nLA = 30, nUA = 100) we get
intermediate results: n∗p,r = 223 for the clinical analysis prior and n∗p,r = 217 for the
sceptical one.

5 Discussion

In this paper we have considered a predictive methodology for sample size determination
with specific reference to the setting of equivalence trials. Thanks to the predictive ap-
proach we are able to account for prior uncertainty and to model prior information, by
specifying the design prior and the analysis prior. Specifically, due to the objective of the
equivalence trials, we have pointed out that the design prior in this case should assign high
probability to the values of the parameters indicating a negligible difference between the
two treatments to be compared. As for the analysis prior, we have also addressed the issue
of sensitivity to the prior specification by adopting a robust approach, as suggested before
in De Santis (2006), Brutti & De Santis (2008) and Brutti et al. (2008). Some results
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have been illustrated for the normal model with the class of restricted conjugate priors,
although this methodology can be potentially extended to different models and classes of
priors depending on the specific context of the application.

A slightly different problem is that of bioequivalence, which is very important in practice
and very popular in the literature. Two different drugs or formulations of the same drug
are defined bioequivalent if they are absorbed into the blood and become available at the
drug action site at about the same rate and concentration (see for instance Berger & Hsu
(1996)). In particular bioequivalence is of practical importance because the approval of
most generic drugs in the USA and in the European Community requires the establishment
of bioequivalence between the brand-name drug and the proposed generic version. This
problem is theoretically interesting because it has been recognized as one for which the
desired inference, instead of the usual significant difference, is practical equivalence. Hence,
we hope to deal with this specific setting in future research.
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A Appendix

A.1 Robust bounds

Let us denote by ln(yn;w) and un(yn;w) the credible interval limits of (14) computed in
correspondence of a given w, where w = nLA, n

∗
A, n

U
A, with n∗A = 4n2(yn−θA)2

σ2z2
1−α/2

− n.

Let us recall the results provided by Brutti & De Santis (2008) (Theorem 1). In this
work it is shown that

Ln(yn; ΓRC) =



ln(yn;nLA) yn < θA + ξL

ln(yn;n∗A) θA + ξL < yn < θA + ξU

ln(yn;nUA) yn > θA + ξU

and

Un(yn; ΓRC) =



un(yn;nUA) yn < θA − ξU

un(yn;n∗A) θA − ξU < yn < θA − ξL

un(yn;nLA) yn > θA − ξL

where ξk = z1−α/2
2n σ

(
n+ nkA

)1/2, for k = L,U .

Here, we derive the results used in Section 2.2 in order to obtain the robust SSD criteria.
The following expression for eLn is also given by Brutti & De Santis (2008):

eLn = EmD(Ln(yn)) =

= l(θD;nLA)Φ(aL) + l(θD;nUA)(1− Φ(aU )) + θA [Φ(aU )− Φ(aL)] +

+
1√

2πλm

[
ψUe

−a2
U − ψLe−a

2
L

]
−
z2

1−α/2σ
2

4n

θA+ξU∫
θA+ξL

1
yn − θA

mD(yn)dyn

where λm =
(
σ2
(
n−1 + n−1

D

))−1, ak =
√
λm(θA − θD + ξk), ψk = n

n+nkA
and dk = θI +

nkA/n(θI − θA) + z/nσ(n+ nkA)1/2, for k = L,U .
It is then straightforward to compute eUn with an analogous procedure, as follows:

eUn = EmD(Un(yn))

= l(θD;nUA)Φ(cU ) + l(θD;nLA)(1− Φ(cL)) + θA [Φ(cL)− Φ(cU )] +

+
1√

2πλm

[
ψUe

−c2L − ψLe−c
2
U

]
−

3z2
1−α/2σ

2

4n

θA−ξL∫
θA−ξU

1
yn − θA

mD(yn)dyn
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where ck =
√
λm(θA − θD − ξk) and ek = θS + nkA/n(θS − θA) − z/nσ(n + nkA)1/2 for

k = L,U .

Now, in order to derive pL,Un , for the sake of simplicity we define the following functions
of w:

A(w) =
θS(n+ w)− zσ(n+ w)1/2 − wθA − nθD

nσ
√

1
n + 1

nD

and

B(w) =
θI(n+ w) + zσ(n+ w)1/2 − wθA − nθD

nσ
√

1
n + 1

nD

.

Then, we have that

pL,Un = Φ
(
min{A(nUA), cU}

)
− Φ

(
B(nLA)

)
· Imin{A(nUA),cU}>B(nLA) +

+ Φ (min{A(n∗A), cL})− Φ
(
max{B(nLA), cU}

)
· Imin{A(n∗A),cL}>max{B(nLA),cU} +

+ Φ
(
min{A(nLA), cL}

)
− Φ

(
max{B(nLA), aL}

)
· Imin{A(nLA),cL}>max{B(nLA),aL} +

+ Φ
(
min{A(nLA), aU}

)
− Φ (max{B(n∗A), aL}) · Imin{A(nLA),aU}>max{B(n∗A),aL} +

+ Φ
(
A(nLA)

)
− Φ

(
max{B(nUA), aU}

)
· IA(nLA}>max{B(nUA),aU}.
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