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Abstract

In this paper we present a case-study on freight railway transportation in Italy.
This case-study is a by-product of a research collaboration with a major Italian
railway company. We highlight the main features of the Italian reality, and propose
a customized mathematical model to design the service network, that is, the set of
origin-destination connections. More specifically, the model suggests the services to
provide, the number of trains traveling on each connection, the number of cars and
their type. It considers both full and empty freight car movements and takes han-
dling costs into account. All decisions are taken in order to minimize the total costs.
The quality of service is guaranteed by satisfying all the transportation demand and
by implicitly minimizing the waiting time of cars at intermediate stations.

Our approach yields to a multi-commodity network design problem with a con-
cave arc cost function. To solve this problem, we implement a specialized tabu
search procedure. Computational results on realistic instances show a significant
improvement over current practice.
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1 Introduction

Railway freight transportation is a relevant activity in many economies, as it supports and

makes possible most other economic activities and exchanges. In the last twenty years,

the privatization and reorganization of most of the national railway companies, combined

with the removal of many entrance barriers and national protectionism to markets, and the

consequent increase of competition, have boosted the development of Operations Research

(OR) methods applied to railway transportation.

For comprehensive reviews on planning models for freight transportation, the reader

may refer to the surveys by Crainic and Laporte [7] and by Cordeau, Toth and Vigo [4].

The former describes the main issues in freight transportation planning and operations

and presents OR models, methods and tools relevant in this field. The latter is specifically

focused on railway transportation. The authors provide a complete list of routing and

fleet management models for freight transportation, scheduling models for train dispatch-

ing and assignment models to assign locomotives and cars. The two cited surveys also

give a broad overview on several types of problems and issues arising within the freight

transportation arena. As a consequence of the topological structure of the problem, most

of the railway transportation models that are available in the literature belong to the class

of network flow models, and they are usually customized to take specific aspects of the

problem into account.

One of the most relevant tactical planning issues in railway transportation is the

Service Network Design problem, i.e., the problem of designing the set of origin-destination

train routes between yards of the network. This is a typical tactical planning problem,

since the effects of decisions span a mid-term planning horizon (about 6-12 months).

Service network design problems have been widely investigated. For a survey on this

topic the reader may refer to [5]. Crainic et al. [6] provide a first example of a tactical

planning model applied to rail freight transportation. In this paper the authors examine

the train and traffic routing problems, and the allocation of work between yards. They also

present an optimization model intended to compute efficient solutions that reduce costs

and provide good quality of service in terms of transportation delays and reliability over a

medium term planning horizon. A nonlinear, mixed-integer, multi-commodity formulation

is given and a heuristic algorithm is tested on instances arising from the Canadian National

Railroads. Kwon et al. [18] present a network flow model on a time-space network to

model the dynamic problem on freight car routing and scheduling. The model is solved

by a column generation technique. Holmberg and Hellstrand [14] propose a lagrangean

heuristic within a Branch & Bound framework to solve the uncapacitated network design

problem with single origins and destinations for each commodity, which can be used to
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model the rail freight transportation. Fukasawa et al. [9] present a network flow model

to maximize the total profits, while satisfying the demands within a certain period of

time, given the schedules and the train capacities. Jeong et al. [17] focus on (part of) the

European freight railway system modeled as a hub-and-spoke network. The scope of their

model, an integer linear program, is to find the transport routes, the frequency of services,

the number of cars composing each train and the transportation volumes. To solve real

instances of the problem, the authors propose a heuristic algorithm. In a very recent

paper, Andersen and Christiansen [2] develop a strategical/tactical model for designing

the transportation services in part of the European network (the so-called Polcorridor),

including in it fleet-sizing considerations, and putting a particular emphasis on some

service quality aspects. The resulting non-linear mixed integer program is linearized and

solved via the XPRESS solver on different modelling scenarios arising in the Polcorridor

network.

Several recent papers address the Railroad Blocking Problem, i.e., the problem of

identifying a car blocking plan in order to minimize handling costs. A car blocking

plan dictates the composition of blocks (groups of incoming cars for connection with

outgoing trains) at each classification yard. On this problem, both Newton et al. [24] and

Barnhart et al. [3] present a network design formulation. Real instances of the problem

are solved in the former paper by a column-generation algorithm and in the latter by a

Lagrangean heuristic approach. Ahuja et al. [1] develop a Very Large-Scale Neighborhood

Search for the blocking problem and test it on data provided by three major US railroad

companies. Liu et al. [20] study the interaction between the design of blocking plans and

the modification of the network configuration, i.e., changing yards location and associated

capacities. All these papers show that relevant cost savings can be obtained by “good”

blocking plans.

In railway freight transportation the movement of empty cars represents an important

source of cost with respect to the budget of railway companies. Dejax and Crainic [8]

provide a complete review of models for empty car movement in freight transportation.

Holmberg et al. [15] face the problem of identifying distribution plans for the movement of

empty cars by solving an integer multi-commodity network flow model on a time-expanded

network. Sherali and Suharco [25] propose a tactical model for the distribution and

repositioning of empty rail cars for shipping automobiles. Jaborn et al. [16] analyze the

cost structure for the repositioning of empty cars, and show that such costs often depend

on the number of car groups handled at yards. In the cost structure they also compound

costs due to car classification at intermediate yards. They observe the economy-of-scale

behavior of total distribution costs, which can be reasonably decreased by building fewer

but larger car groups. The authors model the empty freight car distribution problem as a
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capacitated network design on a time-dependent network and solve it with a tabu search

meta-heuristic.

Many of the papers listed above refer and are customized for the North American

freight railway transportation systems. Although the decision problems are similar in na-

ture, there are several differences between European and North American freight railway

transportation companies, both in the way of managing operations and in the way of han-

dling tactical planning. Consequently, mathematical models developed for the European

system may not be appropriate for the North American one and vice versa.

This paper is a by-product of a cooperation with a major Italian railway company,

which is in charge of managing freight transportation in the whole Italian network. We

have analyzed the freight operations of this company, singling out the differences and

similarities with other freight railway transportation systems, and we have developed a

mathematical model to design the service network. The mathematical model, customized

for this company, takes into account specific features of the system and of the type of

services. It represents both full and empty car movements, considers the specific cost

structure of the Italian railway company, and guarantees important quality requirements.

On this subject, all the transportation demand has to be satisfied and delivered on time.

In fact, in case of late deliveries, transportation contracts and agreements often include

fines and penalties for the railway transportation company.

Besides a detailed analysis of the italian freight rail transportation system, the contri-

bution of this paper is twofold.

First, we present a new mathematical model to design the set of origin-destination

service connections specifically customized for the Italian case. Indeed, we formulate

the problem as a network design model with a non-linear objective function. The non-

linear objective function is used to take into account the requirements on the quality of

service. The mathematical model we propose can be cast as an Integer Concave-cost

Multi-commodity Network Design Problem, which is NP-hard [21].

Second, we describe a specialized tabu search algorithm to solve real instances of the

problem. With the purpose of forcing the algorithm to visit a larger portion of the feasible

region, we add a mechanism to perturb the current solution. The tabu search procedure

takes advantage of the particular structure of the network, thus resulting in an efficient

algorithm compared to other tabu search procedures applied to similar problems. We

demonstrate that the algorithm is able to compute promising solutions on real instances

of the problem.

The remainder of the paper is organized as follows. Section 2 describes the Italian

freight railway transportation system, in order to provide the main hypothesis and con-
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straints for our case-study; the mathematical model is discussed in Section 3; Section

4 presents the tabu search algorithm; Section 5 contains the computational results on

numerical instances; Section 6 provides the conclusions.

2 Description of the Italian freight railway transporta-

tion

Railway transportation systems differ from country to country in several respects. We

here present the main characteristics of the Italian railway transportation system. Many

of these features are also valid for other European systems. The information provided in

this section, resulting from our cooperation with an Italian railway company, will allow

us to design an optimization model (described in Section 3) which is consistent with the

Italian reality, and possibly extendable to other countries.

The Italian railway transportation takes place either with a complete train or a single

car. Complete trains are dedicated point-to-point trains, rented by a customer, used to

move goods when they are quantitatively and/or economically considerable. Complete

trains are directly scheduled by the customer, who pays in full for the service received.

Moreover, complete trains are often composed by private (customer owned) cars, and they

are usually balanced in there-and-back shipments. In any case, there are no restrictive

constraints on car availability.

In the single car transport modality, the railway company is in charge to move goods

from their origins to their destinations either with a direct train, if one exists, or with

a sequence of trains with one or more intermediate stops. Cars move on a physical

network composed by a set of yards and a set of tracks connecting the yards. Using a

hierarchical criterion of importance, yards are classified in first, second and third level

and are connected in a hub-and-spoke mode. That is, a second level yard (resp., a third

level yard) is connected to a first level yard (resp., a second level yard). First level

yards, also called classification yards, are the only one equipped with special tracks, called

classification tracks, each of them generally used for one specific destination. Once a train

arrives at a classification yard, all cars are separated, classified and those, which are not

yet arrived to their final destination, are recombined to compose new outgoing trains.

In the single car transportation modality, trains are usually multi-client and unbalanced

in the there-and-back shipments, and difficult decision problems are involved. Railway

companies have to face several trade-offs between the cost structure and the service quality,

e.g., all the demand of transportation has to be satisfied and possibly delivered on time.

Although cars traveling the Italian network may belong to foreign or to other private

companies, freight trains are always arranged by the Italian railway company. In Italy,
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freight trains run according to a fixed schedule and are mostly operated at night. During

daytime, they have to give priority to passengers trains. This is not the case in North

America, where trains usually leave a yard only when a sufficient cargo tonnage is reached,

and they have priority over passenger trains. In addition, some railroads, sometimes single

track too, are of exclusive use of freight trains. In Italy, and in Europe as well, single track

railroads are extremely rare, and no railroad is exclusively dedicated to freight trains.

The size of the Italian trains is quite small: a freight train generally does not have

more than 20 cars, does not exceed 600 meters length, and is usually pulled by only one

locomotive. Moreover, cars are generally managed individually and no “blocks” (groups

of cars) are composed. At any classification yard, cars are uncoupled from the incoming

train, reclassified and, if they have not reached their final destination yet, coupled again

to a new outgoing train. Therefore, at any intermediate classification yard, car handling

implies a coupling and an uncoupling manoeuvre, with significant impacts on the total

transportation costs and delivery times. Hence any mathematical model, developed with

the scope of managing efficiently freight operations, cannot avoid to take handling costs

into account. Although the experience of North American systems suggests that large

economies of scale can be achieved by managing blocks of cars, in Italy blocks of cars are

not used for the following reasons. First of all, the Italian cars are not equipped with

automatic hooks which facilitate the manoeuvre of groups of cars; second, the organization

should be modified; and finally the size of trains is rather small with respect to the

American counterpart, thus limiting the possibility to achieve large economies of scale.

Table 1 summarizes the main differences between railway transportation systems in North

America and Italy. The comparison has highlighted three major features that are relevant

for the model that we shall propose: first, freight trains are planned according to a fixed

schedule; second, length and weight limits are rather tight, as a train can be assigned

at most 20 cars; third, there is currently no possibility of grouping cars in blocks at

intermediate yards.

2.1 Data analysis

We here report an analysis on traffic demand and on car movements. This analysis

highlights some interesting features of the current Italian freight rail transportation, thus

allowing us to design an optimization model (described in Section 3) which is consistent

with the Italian reality. Data on car movements have been retrieved from historical

databases of our industrial partner.

These data refer to cars owned by the company and moved on the Italian railroad

network. This railway company owns about 35% of the total cars. The remaining part
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is owned by foreign companies (51%), both public and private, and other private Italian

companies (14%).

There are several types of cars. As a first approximation, we may classify cars in

seven major classes. Two of these classes, namely cars of type R/Rh and of type S/Sh

(prevalently dedicated to containers, wood, iron and steel industry products), are those

mostly used and currently cover about half of the total demand.

As for the cost structure, a first source of cost is the movement of empty cars. Even

though they do not generate any economic return, these movements are necessary to

overcome imbalances in the demand for cars at each node of the network. In Italy the

movement of empty cars accounts for about 40% of the total car trips. Whenever a

demand for empty cars arises, it is first satisfied with the internal offer (intra-plant), i.e.,

with cars available in the same geographical region. When intra-plant empties are not

available, then inter-plant cars, i.e., cars coming from other geographical regions, are used.

Inter-plant movements are 42% of the total. This large number of empty car movements

reflects the Italian economy, characterized by production districts concentrated mainly in

the northern part of the country.

The second relevant source of cost is the car handling process at intermediate yards.

On average, car handling costs add up to one third of the total transportation costs that

the railway company sustains to move a car from its origin to its final destination. In

Figure 1 we report the number of manoeuvres for each car from its origin to its destination.

The picture shows that more than one third of the empty cars change train at least twice

before arriving at final destination (i.e., each of these cars is coupled to at least three

trains). This large number of manoeuvres affects also the duration of the total travel

time of a car from its origin to its destination. Reducing the number of manoeuvres, it is

possible to guarantee a better quality of service to customers.

Finally, we verified the level of use of a car, in order to evaluate how the locked up

capital is used. We refer to a cycle of a freight car as a trip between two consecutive loads.

Figure 2 depicts the number of cars, ordered by number of cycles, in a period of three

months. A large number of cars runs few cycles: half of the cars are used for less than one

fourth of the total number of cycles. In addition, we define a dispersion index to measure

the frequency of a car traveling the same service. More formally, the dispersion index of

car i, denoted by D(i), is defined as the ratio between the number of origin-destination

pairs visited by a car i, and its total number of cycles:

D(i) =
number of O/D visited by car i

number of cycles of car i
, for each car i.

D(i) assumes values in the interval (0, 1]. If it is equal to one, car i is used at each cycle
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for a different origin-destination pair (case of maximum dispersion). On the other hand,

the more D(i) is closed to 0, the more car i is travelling the same set of origin-destination

pairs. To compute such an index, we considered only those cars running at least two

cycles per month. In Figure 3 we report the dispersion index of cars with respect to

the number of cycles. Half of the cars have a dispersion index which is close to one; on

the other hand, less than 10% of the cars are always used for the same service. Private

companies show quite different performances: their cars have a higher level of usage and a

smaller index of dispersion (see Figure 3). These statistics reflect a natural situation, due

to the public nature of the service provided by the Italian railway company. However, it is

believed that, reducing the dispersion index of cars, it is possible to improve the efficiency

of the operations. The concentration of freight flows on few links can be profitable in a

hub-and-spoke transport modality.

In conclusion, the data analysis carried out on freight transportation has highlighted key

features of the system, which can be summarized as follows. First of all, empty car

movements represent a large portion (about 40%) of the total car movements, and they

should be carefully managed. Second, we observe the necessity of taking into account the

manoeuvres of cars at intermediate yards, since they have a big impact (more than 30%)

on the total transportation cost and they can cause inefficiencies. Finally, we highlight a

low level of use of cars, and the need for a reduction of their “dispersion” on the network.

As we shall see in the following section, these issues will be considered in the proposed

model.

3 A mathematical model for the freight service net-

work design problem

In this section, we present a static mathematical model to design the set of services

customized for an Italian freight railway transportation company. The scope of the model

is to satisfy the demand of transportation at a minimum cost, over a mid-term planning

horizon. The results of the mathematical model are: i) the definition of the service

network and of the number of direct trains connecting the origin-destination pairs; ii) the

routing of cars on the network. In the model, we consider both full and empty cars. In

addition to the satisfaction of all the demand of transportation, the solution has also to

satisfy the following requirement on service quality: goods have to be delivered on time.

This requirement is enforced by minimizing the waiting time of cars at intermediate yards.

As an underlying structure of the model, we consider the network of possible services,

represented by a directed graph D = (N ,A), where N denotes the set of classification
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yards and A the set of all possible direct services. Since it is always possible to have a

direct train between any pair of yards, we can reasonably assume that the network of

possible services is complete, thus A ≡ N ×N .

As mentioned above, the purpose of the model is to design the network of active

services, namely D′ = (N ,S), which is a subgraph of the complete (directed) graph

D = (N ,N × N ). More precisely, if (i, j) ∈ S, then we say that yard i ∈ N is directly

connected to yard j ∈ N by a service, that is, there exists at least one direct train

connecting i to j. The frequency of a service is the number of trains planned on a service

in the time unit, which is typically one week.

Cars move from their origins to their destinations using either a direct service, if

one exists, or a sequence of trains with intermediate stops. Since blocks of cars are not

allowed, we can assume without incurring in poor approximations that, whenever a train

stops at an intermediate classification yard, all its cars are reclassified. In view of this

hypothesis, we can directly associate handling costs to arcs (i, j) ∈ (N ×N ) representing

direct connections between pairs of classification yards i, j ∈ N .

We also assume that the network of services is uncapacitated. According to the expe-

rience of the Italian railway company managers, at a tactical decision level each arc of the

railroad network has enough capacity to route the cars needed to satisfy all the demand.

The mathematical model, in common with most of the transportation models available

in the literature, minimizes the total costs. In view of the data analysis presented in

Section 2.1 and of the experience of experts, the cost structure of freight transportation for

the Italian company can be decomposed into two major components: train and car costs.

These costs are accounted in the system of the railway company as costs per kilometre.

The train cost per kilometre includes costs of depreciation, maintenance, power, tool and

engine drivers. If δ denotes the train cost per kilometre, to each arc of the network we

can assign a cost fij = δ · dij where dij is the length of the link (i, j). The car cost per

kilometre γp includes both car depreciation and maintenance of a car of commodity type

p. In view of our assumptions, the total cost for a car of commodity type p traveling a

link (i, j) is given by the formula cp
ij = γp · dij + mp

j , where mp
j is the handling cost of a

car of commodity type p at yard j. The formulation of the model requires the definition

of the following additional notation:

• N = 1, 2, . . . , n: the set of yards;

• K = 1, 2, . . . , k: the set of commodities, given by the cartesian product of the set of

car types and the set of yards;

• bp
i : the supply (if positive) or the demand (if negative) of cars of commodity p at

yard i;
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• α: the maximum number of cars that can be assigned to a train.

The decision variables of the model are:

• xp
ij : the number of cars of commodity p ∈ K assigned to service (i, j);

• yij: the number of trains traveling on the direct service (i, j), i.e., the frequency of

service (i, j).

The formulation here follows:

Min
∑

(i,j)∈A

h(yij) · fij · yij +
∑

(i,j)∈A,p∈K

cp
ij · x

p
ij

s.t.

∑

j∈N

xp
ji −

∑

j∈N

xp
ij = bp

i ∀i ∈ N , ∀p ∈ K. (1)

∑

p∈K

xp
ij ≤ α · yij ∀i, j ∈ N : i 6= j. (2)

xp
ij ∈ Z

+ ∀i, j ∈ N : i 6= j, ∀p ∈ K. (3)

yij ∈ Z
+ ∀i, j ∈ N : i 6= j. (4)

First of all, a few words on the objective function. As we have mentioned above, the

model minimizes the total costs, which include both train and car costs. Train costs are

multiplied by a parameter which is a function of the number of trains traveling link (i, j):

h(yij) =

(

a +
b

yij + 1

)

, with 0 < a < 1 and b > 0.

The introduction of this parameter h(yij) is motivated by the requirements on service

quality. These requirements are soft constraints, i.e., their satisfaction is preferable but

not mandatory. By means of the objective function, the model prefers service networks

with freight flows concentrated on some links, thus guaranteeing a high frequency and

possibly a lower dispersion of cars on the network. This implies a reduction of the waiting

time of cars at intermediate yards. Note that h(yij) makes the objective function concave.

Further details on the structure of the objective function are reported in Section 5.1.

Constraints (1) are the so-called mass balance constraints: they state that all the

demand has to be satisfied and no goods are dispersed on the network. Constraints

(2) link the decision variables: the total number of cars traveling on a specific origin-

destination pair is closely related to the number of trains running on the same o-d pair.
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The mathematical model belongs to the class of the multi-commodity network design

problems with concave cost function. Minimum concave-cost network flow problems are

known to be NP-hard (refer to [13] for a survey on algorithms and applications). Several

solution techniques have been developed, both exact and approximate. The first ones

explicitly or implicitly enumerate the vertices of the polyhedron defined by the network

constraints, and are based on Branch & Bound, extreme point ranking methods or dy-

namic programming [13]. The second ones can be subdivided into two classes: heuristic

and approximation algorithms. Heuristics find local optima using standard convex pro-

gramming techniques; approximation algorithms use piecewise linear approximation of

the concave objective functions.

We here propose a specialized heuristic algorithm based on a tabu search, which com-

putes good solutions in reasonable computational time.

4 A tabu-search heuristic algorithm

The application of railway transportation models to real operations generally requires the

solution of large size instances, thus calling for a compromise between solution quality and

computational time. The size of any realistic instance of the service network design model

presented in Section 3 is very large. Even instances which consider only classification

yards lead to formulations with a number of constraints and variables of order of several

hundreds of thousands. Given the computational complexity of the problem, we propose a

heuristic algorithm based on tabu search (see [10] and [11] for details on tabu search). This

choice is motivated by the requirement of our industrial partner to have good solutions in

reasonable computational time. We furnish the algorithm with a perturbing mechanism

(diversification phase) which alters the current solution in order to explore a larger portion

of the solution space.

Meta-heuristic algorithms have been widely implemented to solve railway transportation

models. For instance, we can mention Maŕın and Salmerón [22], [23] and Gorman [12]

among others. Maŕın and Salmerón [22], [23] compared the application of three different

local search meta-heuristics to the tactical planning of rail freight networks. Gorman [12]

discussed both genetic and tabu search meta-heuristics to solve the weekly routing and

scheduling problem of a major US freight railroad.

In our model, decisions are classified into service decisions (whether to activate or not a

direct connection between a pair of yards of the network) and routing decisions. In the

proposed heuristic we treat the two types of decision variables in a hierarchical manner,

i.e., we first fix the value of service decision variables and then we decide how to route
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cars using the activated links. Figure 4 reports a flow chart of the proposed heuristic

algorithm. In particular, it is composed of three phases: the generation of a starting

feasible solution; the tabu-search core procedure; and the so-called “perturbing phase”.

Finding a starting feasible solution. Our heuristic procedure is initialized with start-

ing feasible solutions. These solutions are computed with different methods, listed in the

sequel.

Minimum spanning tree: The initial solution is given by a minimum spanning tree

found on a complete graph, whose arc costs rij are computed as follows:

rij =
dij

gij

, ∀(i, j) ∈ N ×N

where dij is the length of the link (i, j), and gij represents the total demand for

full cars from origin i to destination j. Observe that the minimum spanning tree

minimizes the number of services, i.e., direct links between specified origins and

destinations.

Currently used service network: We use the solution that is currently implemented,

which is computed on the base of practitioners’ experience.

Direct service graph: We compute a solution which satisfies all the demands with a

direct service. This solution clearly minimizes the car handling costs.

Minimum length graph: We compute a feasible solution selecting arcs from the

network of possible services in a minimum length order until a connected graph is

obtained.

The scope of all these methods is to compute a variety of feasible solutions quickly. Once

the initial feasible service network is computed, we route cars minimizing the overall cost

of the solution. Note that we consider full and empty cars separately, since they have

different features. Full cars are characterized by a specific O/D pair, while empties have

to satisfy only constraints on the type: any demand for empty cars can be satisfied with

cars located at any origin.

As observed in Section 3, the service network is uncapacitated and we can schedule

on any service as many trains as needed. Therefore, the flow of full cars can be computed

using a shortest path algorithm for each commodity. In particular, we implement the

Floyd-Warshall algorithm. To route the empty cars, we solve an uncapacitated minimum

cost flow problem (one for each commodity).
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Tabu search procedure. The core routine of our heuristic algorithm is a tabu search

procedure. As a neighborhood of the current solution, we consider the set of all the net-

works that can be obtained from the current service network adding or dropping one arc

at a time. Thus our tabu search procedure is based on two simple types of neighbor-

hood move. Adding an arc corresponds to opening a new service, while dropping an arc

corresponds to closing the corresponding service. If Dc(N ,S) denotes the current service

network, its neighborhood, namely N(S), is defined as follows: N(S) =
{

Dc(N ,S ′) : S ′ ∈

(S+ ∪ S−)
}

where S+ := S ∪ {(i, j) for some (i, j) 6∈ S} and S− := S \ {(i, j) for some

(i, j) ∈ S}.

For each move a new solution is obtained. Among all these solutions we should select

the one of minimum cost (to which corresponds the maximum improvement of the objec-

tive function value). An exact computation of the solution cost requires the solution of

routing sub-problems, one for empties and one for full cars. This approach can be very

time consuming thus leading to high computational time. To overcome this drawback, we

use estimates of the solutions cost, computed as follows. Consider a new solution obtained

by adding a new direct service (arc) between nodes i and j. In this case, all the flow going

from i to j is re-routed on the directed arc (i, j). Given the updated flow vector, the new

cost of the objective function is obtained by simply adding the new total transport cost

and the new car handling costs. On the other hand, if an arc is removed, say (i, j), all the

trains which previously travelled arc (i, j) are re-routed along the shortest path connecting

i to j. Note that, in removing a service, not all moves are allowed since the arc deletion

has to preserve graph connectivity. These procedures for the estimation of solution cost

are fast and easy to implement; in fact, they do not compute any car routing but they

only focus on the O/D pair whose connection status has been changed by the move. Yet,

these procedures provide only an estimate of the cost. Figure 5 highlights the possible

errors that could be made. However, once the most convenient move is determined on the

basis of cost estimates, the new service network is considered, and full and empty cars

are routed optimally, thus computing the optimal flow vector and the exact cost.

Two different data structures - a tabu list TL1 and a tabu list TL2 - are used in order to

keep information on the last visited solutions. TL1 is a l-dimensional list which is filled

with the last l solutions visited by the algorithm, while TL2 is an h-dimensional list which

contains the last h moves performed by the procedure. The dimensions of the lists are

fixed a-priori and their value are input parameters of the procedure. A trade-off exists on

the dimension of the lists. Larger is the dimension of the lists and likely better solutions

can be computed, at a cost of longer computational times. Once the list is full, i.e., the

number of stored solutions in TL1 (resp., TL2) is equal to l (resp., h), and it is necessary

to add a new solution to the list, then the solution of the list with maximum-cost is
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removed. Clearly, the tabu restriction of a solution may be ignored in case the produced

solution is better than the current best solution. The algorithm ends when a maximum

number of iterations is achieved.

Perturbing phase. In order to visit a larger portion of the feasible region, we furnish

our tabu search algorithm with a diversification phase consisting of three perturbing

mechanisms: the forced insertion, the forced removal and the serial elimination.

Whenever the current optimal solution is not updated within a certain (fixed) number

of iterations, the algorithm is forced to perform a move. The move consists of adding

or dropping an arc. In the first case, we say that we apply a forced insertion, while in

the second case we say that we apply a forced removal. Among a set of candidate arcs,

the arc that is either added or dropped is the one providing the highest improvement or

the lowest worsening of the objective function. The set of candidate arcs is composed by

a certain (fixed) number of less-recently-selected arcs. Again, if a removal is performed,

network connectivity has to be verified.

The third perturbing mechanism, referred to as serial elimination, forces the algo-

rithm to move from the current solution to a different one outside its neighborhood.

Whenever the current optimal solution is not updated within a certain (fixed) number of

iterations, the serial elimination forces the algorithm to re-start the local search from a

service network which is composed by a “minimal” number of direct arcs. More precisely,

the procedure forces the algorithm to keep on removing arcs until the solution becomes

composed by a small fixed number of arcs. Again, removed arcs have to keep network

connectivity and are those providing the highest improvement or the lowest worsening to

the objective function.

5 Computational results

In this section, we present the computational results on instances of the problem. We

first report the computation on random generated instances and then, in Section 5.1, we

study a real instance provided by our industrial partner.

The set of random instances includes 25 “small” instances, each characterized by two

commodities and a number of yards in the range between 5 and 10. Distances, demands

and handling costs have been randomly generated using a uniform probability distribution.

All the parameters used to generate the instances are summarized in Table 2.

We first solved these instances using MINLP-B&B [19] (with the default settings),

a package for mixed-integer non-linear programs, which implements a branch & bound

procedure. The problems at nodes of the b&b search tree are continuous nonlinear con-
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strained optimization problems. These problems are solved using a sequential quadratic

programming algorithm. All these instances have been solved to optimality within one

second. However, the solver is not able to converge to an optimal solution within the time

limit (set to 3600 seconds) on instances which are comparable in size to real instances,

thus showing the low scalability of the b&b procedure.

We tested the computational performance of our heuristic algorithm comparing the

optimal and heuristic solutions of the random generated instances described above. These

results are listed in Table 3. In most cases the heuristic algorithm finds the optimal

solution within few seconds. In one third of the instances the heuristic solution differs

from the optimal one. However, the deviation from the optimum is rather low (1.78 %,

on average).

5.1 Tests on a real instance

We here report the computational results for a real instance of the problem. Data on

traffic demand and on car transportation and handling costs has been retrieved from

historical databases and from the accounting system of the Italian railway company. The

maximum number of cars which can be assigned to a train has been set to 20. We restrict

our analysis to a network which includes all the classification yards and the border passes.

Therefore the number of nodes of the network is 39. The traffic demand of lower-level

yards has been aggregated to the demand of the corresponding classification yard. The

instance also includes 375 commodities.

Computational experiments showed that best solutions are computed starting the

algorithm procedure with either the minimum spanning tree solution or the currently

used service network solution (see Section 4 for details).

A first phase of the computational experiments has been devoted to the fine tuning of

the algorithm parameters. The best computational performance of the algorithm, in

terms of quality of the solutions computed, are obtained with the following values of the

parameters.

• The dimensions of the tabu-lists TL1 and TL2 are set to 10 and 7, respectively.

• The forced insertion and the forced removal modules may be activated, respectively,

every 15 and 50 iterations of the standard procedure without improvement in the

objective function value.

• The serial elimination module may be called every 150 iterations of the standard

procedure without improvement in the objective function value, until the number

of arcs of the solution becomes equal to 135.
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A second phase of the tests has been devoted to investigated how much the heuristic

solution is sensible to the choice of the multiplicative factor h(yij). The introduction

of the multiplicative factor into the cost function has been motivated by the request of

guaranteeing a certain level of quality of service. The railway company prefers direct

services with a sufficiently large number of planned trains (see Section 3). We handled

this preference introducing a multiplicative factor in the objective function. The scope of

this factor is to reduce (to increase) train costs if enough (few) trains are scheduled on

the service. The expression of the multiplicative factor, which has been decided with the

experts of the railway company and has been corroborated by an internal and undisclosed

data analysis, is the following (see Fig. 7):

h(yij) =

(

a +
b

yij + 1

)

,

with 0 < a < 1, and b > 0.

The parameter a bounds above the maximum cost-reduction. For instance, if a = 0.8,

then the maximum cost-reduction on a link is 20% of the total train costs. The parameter

b is fixed in order to neutralize the effect of the multiplicative factor h(yij) (i.e., it is equal

to 1) whenever the number of trains scheduled on the service is equal to the threshold-

value set by the company preferences. In our case, this threshold-value has been set

equal to ten trains per week for all the services. As an example, in Figure 6 we report

the number of links in the optimal solution assuming that a varies from 1 to 0.1. It is

clear that a smaller value of a corresponds to a higher sensibility to quality of service,

while a = 1 implies that no “quality cost” is considered. As shown in the picture, the

smaller the value of a is, the more the freight flow is concentrated on a small number of

service links. In our case, all the parameters are fixed according to cost criteria which are

currently used in the accounting systems of the railway company. In particular, the choice

for the value of the parameters is a = 0.9 and b = 1.1. These values may be considered

as those that better fit the cost structure of the company. Using these coefficients, the

train cost is increased in case of a small number of trains planned on a service, while it is

reduced (but never more than 10%) in case of a large number of trains (see Fig. 7).

Figure 8 depicts the network of services currently used by our industrial partner (left

side of the figure) and the network of service proposed by our algorithm (on the right

side). Comparing the two solutions, it is evident that many direct services (links of the

network) are the same for both solutions. However, the mathematical model suggests a

larger number of services which are mainly concentrated in the northern part of Italy.

Indeed, in the southern part, the two solutions show almost the same services, with minor

differences. Without a large increment of the freight transportation demand, the current
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infrastructure and the geographical features of the region do not leave enough room for

solution improvements. Therefore, in this part of Italy, the current freight transportation

practice is the best practice. The northern part of Italy is the region where the two

solutions are mostly different. In this area, the algorithm suggests a larger number of

direct services. The current practice organizes freight operations in a hub-and-spoke

modality with few major hubs connecting all the yards of the network. The algorithm

suggests more yard-to-yard connections, thus allowing a reduction of handling costs, which

represent a large portion of the total costs. At the same time, a larger number of direct

services allows a higher efficiency in time deliveries. For a quantitative comparison of

the two solutions, Table 4 summarizes both technical and economical statistics, hereafter

listed:

1. C: the objective function value, representing a measure of the total cost.

2. S: the number of direct services between yards.

3. T : the number of trains necessary to deliver all the cars on the service network in

order to satisfy all the transportation demands.

4. TK: the total amount of kilometers covered by all the trains traveling on the

network.

5. CK: the total amount of kilometers covered by all the cars traveling on the network.

6. M : the number of manoeuvres.

It can be observed that total costs decrease of 3.82%, as well as the number of trains

(−9.56%), car manoeuvres (−9.61%), and the total amount of kilometers covered by all

the trains (cars, resp.) traveling on the service network (−3.17 and −3.16%, resp.). This

cost decrease reflects onto an increase in the number of direct services which are activated

in the solution proposed by the algorithm (+9.72%).

6 Conclusions

In this paper we have presented a case-study on the freight railway transportation, which

has been promoted by an Italian railway company. As part of the study, a thorough

analysis on the company operations has been carried out. The analysis has highlighted

some specific features of the Italian transportation reality. Several differences with other

freight railway transportation systems turned up, especially with the North American

ones. Relevant differences arise with respect to the planning process, the structure of
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railroads, in the policies adopted to compose trains and in the train limits in terms of

maximum weight and length. For the Italian case, we have detected the following key

aspects:

1. A large portion of the total transportation costs is due to both empty car distribution

and car handling at intermediate yards.

2. Blocks of cars are not formed.

3. The transport system has to guarantee some quality requirements, such as the punc-

tuality of goods delivery.

All these aspects are considered in the mathematical model we have presented to design

the network of services, i.e., the set of direct train connections between pairs of yards. The

model, which is specifically tailored to the Italian reality, also determines the routing of

freight cars on the network. It suggests the services to provide, the number of trains and

both the number and type of cars traveling on each service. All the decisions are taken

to minimize the total costs. The quality of the service offered to customers is enforced by

a concave cost objective function.

The resulting model, which can be classified within the class of minimum concave-

cost network design problems, is solved with a specialized tabu search meta-heuristic

algorithm, which adopts some perturbing mechanisms in order to diversify the search

process.

The computational results show a good behaviour of the algorithm on realistic in-

stances of the problem, thus proving the viability for an integration in a decision support

system.
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Figure 2: Number of cycles per car.
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Figure 3: Dispersion of cars on O/D pairs. Blue circles refer to the Italian rail company, while
purple circles refer to other private companies. The ray of the circles is proportional to the
number of cars.

# iter = max iter? 

Order solutions in the neighborhood  

by non increasing cost in a list L 

Is s’ tabu? 

Serial elimination 

Forced insertion/removal 

Route full and empty cars 

Generate a feasible service network s 

Choose the first solution s’ in L 

Remove s’ from L 

s is locally opt 

f(s’) < f(s)? 

Starting 

solution 

Tabu 

search 

Perturbing 

phase 

s:=s’ 

Y 

Y 

Y 

N 

N 

N 

TABU LOOP 

MAIN LOOP 
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Figure 5: Cost-stimate for a solution obtained by removing a direct link. (a) The routing before
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flow of cars with origin-destination pair i − j, j − k and i − k, respectively, and suppose that
arc (i, j) is removed. Then, flow fij + fjk is moved from arc (i, j) to the (new) shortest path
connecting i to j, namely {(i, h), (h, k), (k, j)}. It follows that, when estimating the cost of the
new solution, the algorithm will take into account the amount of flow fik on arcs (k, j) and
(j, k); however, this flow should not be routed at all.

193

153

124
109

100
92 86 85 78 72

0

20

40

60

80

100

120

140

160

180

200

220

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

h(y)

n
u

m
b

er
 o

f 
lin

ks

Figure 6: Tests on the multiplicative factor h(y).

23



0

0,1
0,2

0,3

0,4
0,5

0,6

0,7
0,8

0,9
1

1,1

1,2
1,3

1,4

1,5
1,6

1,7

1,8
1,9

2

0 5 10 15 20 25 30 35 40 45 50

Figure 7: The multiplicative factor h(yij).

(a) (b)

Figure 8: (a) The currently used service network. (b) The service network computed by the
proposed algorithm.
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Tables

North America Italy

Planning process Trains leave when a suf-
ficient cargo tonnage is
reached.

Trains leave on schedule.

Priority to freight trains. Priority to passenger
trains.

Railroads Many single railroads Few single railroads.
dedicated to freight trains. No railroad is dedicated to

freight trains.

Length/weight limits Up to 5000 m. Up to 600 m.
Trains with several pulling
locomotives.

Trains with at most 2 or 3
pulling locomotives.

A container can be carried
on top of another one.

No container can be car-
ried on top of another one.

Blocks of cars Widely used. Rarely used.
Automatic hooks. Manual manoeuvre.

Table 1: Freight rail transportation in North America and in Italy.

Random instances Real instance

Number of instances 25 1
Number of yards (n) 5 to 10 39
Number of commodities (p) 2 375
Distances (Km) U [0, 2000] 0 to 2000
Demands (number of cars) U [−2000, 2000] -2000 to 2000
Car handling cost (euro) U [0, 50] 0 to 50

Table 2: Characteristics of the random generated and of the real instances of the problem. Here
U [a, b] denotes a uniform probability distribution on the interval [a, b].
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ID # of yards OPT HEUR Deviation

1 5 2466557 2466557 0%
2 5 962219 962219 0%
3 5 1208717 1208717 0%
4 5 3003811 3003811 0%
5 5 1177365 1177365 0%
6 6 1067901 1167883 9.36%
7 6 2144221 2144221 0%
8 6 600882 650166 8.20%
9 7 3342363 3342363 0%
10 7 2670854 2670854 0%
11 7 1401017 1527085 9.00%
12 7 1362462 1362462 0%
13 7 1098599 1100798 0.20%
14 8 1563992 1746920 11.70%
15 8 2314114 2314114 0%
16 8 1422406 1422406 0%
17 8 1506203 1506203 0%
18 9 843020 875676 3.87%
19 9 453658 453658 0%
20 9 2004919 2004919 0%
21 9 1947572 1947572 0%
22 10 2058998 2080492 1.04%
23 10 1536016 1536016 0%
24 10 1586018 1586018 0%
25 10 1404944 1420350 1.10%

Average deviation 1.78 %

Table 3: Testing the algorithm on the set of random generated instances.

Parameter Current network Algorithm solution % Comparison

C 11767851 11318144 -3.82%
S 144 158 +9.72%
T 4258 3851 -9.56%
TK 1060889 1027310 -3.17%
CK 21217665 20546329 -3.16%
M 170390 154014 -9.61%

Table 4: Comparison between the currently used service network and the service network
proposed by the heuristic algorithm.
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