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Abstract
Response-surface methodology aims at finding the combination of factors levels which
optimizes a response variable. A second order polynomial model is typically employed
to make inference on the stationary point of the true response function. A suitable
reparametrization of the polynomial model, where the coordinates of the stationary point
appear as the parameter of interest, is used to derive unconstrained confidence regions for
the stationary point. These regions are based on the asymptotic normal approximation
to the sampling distribution of the maximum likelihood estimator of the stationary point.
A simulation study is performed to evaluate the coverage probabilities of the proposed
confidence regions. Some comparisons with the standard confidence regions due to Box
and Hunter are also showed.

key words: asymptotic distribution, response surface methodology, second-order polynomial model,
unconstrained optimization.

1 Introduction

In response-surface methodology (RSM) a second order polynomial model is typically used to find
the optimal setting for k predictor variables that maximizes or minimizes a response variable of
interest, Y . RSM is actually a combination of statistical and mathematical techniques originally
proposed by Box and Wilson (1951) in the field of chemical industry. Subsequently, this set of
procedures has been further developed and refined with applications in many scientific areas.
For a comprehensive and detailed description about this methodology see, for instance, the
textbooks by Khuri and Cornell (1996), Box and Draper (2007) and Myers et al. (2009).

In actual applications, it is common practice to code the original input variables to get
dimensionless factors, X1, ..., Xk, having zero mean. The standard quadratic model can be
written in matrix notation as

y = β0 + xT β + xTBx + ε, (1)
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where x is a fixed combination of the levels of the k input variables, β0 is the intercept term,

β =




β1

β2
...

βk




, B =




β11
1
2β12 · · · 1

2β1k
1
2β12 β22 · · · 1

2β2k
...

...
. . .

...
1
2β1k

1
2β2k · · · βkk




and ε is the random error having a normal distribution with zero mean and unknown variance
σ2. Typically the adequacy of the quadratic model is investigated by using an F test for the
significance of the contribution of the second order terms (including interactions) to a model
that already contains the linear terms. If model (1) is found to be adequate, the interest
is focused on the stationary point of the true response function, denoted by ξ = (ξ1, ..., ξk).
When n > k observations of the response variable are available, an estimate of ξ is obtained
as ξ̂ = −1

2B̂
−1β̂, where β̂ and B̂ are the maximum likelihood estimates (MLEs) of β and B

respectively. The nature of ξ̂ is determined by the eigenvalues of matrix B̂: if they are all
positive, the fitted quadratic surface has a minimum at the stationary point ξ̂ and, if they are
all negative, ξ̂ is a maximum. When instead the eigenvalues have mixed signs, the estimated
stationary point results to be a saddle point. Many methods for constructing confidence intervals
on the eigenvalues of matrix B have been discussed in the literature (see, for instance, Carter
et al., 1986; Carter et al., 1990; Peterson, 1993; Bisgaard and Ankenman, 1996): if any of these
intervals cover the value of zero, the true surface may have some type of rising behavior. The
MLE ξ̂ is simply a point estimate of the true stationary point and the construction of confidence
regions on the location of the true parameter is needed to assess how accurate is our estimate and
how much flexibility is available in choosing optimum conditions. The standard unconstrained
confidence regions for the stationary point are due to Box and Hunter (1954). Denoting by d̂(x)
the first derivative vector ∂ŷ/∂x, the 100 ∗ (1−α)% Box and Hunter confidence region consists
of all the points x such that

d̂(x)T V̂−1
d d̂(x) ≤ k F (α; k, n− p), (2)

where V̂d̂ is the estimate of the variance-covariance matrix of d̂(x), n is the sample size,
p = 1 + 2k + k(k−1)

2 is the number of regression coefficients and F (α; k, n − p) is the 1 − α

quantile of the F distribution with k and n − p degrees of freedom. Hereafter we refer to this
confidence region as the “BH region”. For more recent developments of procedures to compute
constrained confidence regions for the optimal point, readers are referred to Stablein et al. (1983)
and Peterson et al. (2002) among others.

Assuming that a unique stationary point ξ for the true quadratic surface exists, model (1)
can be rewritten using a different parametrization, that is

y = α0 + (x− ξ)TA(x− ξ) + ε, (3)
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where x and ε have the same meaning as in model (1), α0 is the response value at ξ and

A =




α11
1
2α12 · · · 1

2α1k
1
2α12 α22 · · · 1

2α2k
...

...
. . .

...
1
2α1k

1
2α2k · · · αkk




.

The one-to-one correspondence between the parameters of the two models allows to derive the
MLEs of model (3) from the MLEs of model (1), using the relations α̂0 = β̂0 − 1

4 β̂
T
B̂−1β̂,

ξ̂ = −1
2B̂

−1β̂ and Â = B̂. Of course, if we employ model (3), the nature of ξ̂ is determined
by studying the signs of the eigenvalues of Â. The usefulness of this reparametrization lies
in the fact that ξ appears explicitly in the model as the parameter of interest, while the
other parameters, α = (α0, α11, ..., αkk, α12, ..., αk−1,k)T and σ2, can be treated as nuisance
parameters. Sambucini (2007) and Sambucini and Piccinato (2008) introduce and employ this
model to provide likelihood and Bayesian procedures to make inference on the location of the
true optimum point, using both informative and non-informative prior distributions.

In this paper we construct unconstrained confidence regions for the stationary point by
exploiting the asymptotic normal approximation to the sampling distribution of ξ̂. This
distribution can be derived from model (3), as shown in Section 2. The results of a simulation
study for k = 2 are also included to assess the accuracy of such normal approximation to ξ̂.
Section 3 illustrates how to obtain approximated confidence regions for ξ based on the asymptotic
distribution given in the previous section. In Sections 4 and 5 some real data examples with two
and three input variables are used to compute and compare the proposed confidence regions with
those proposed by Box and Hunter. In Section 6 we present simulation results about coverage
rates and sizes of the confidence regions. Finally, a discussion is given in Section 7, with some
concluding remarks.

2 Asymptotic distribution of the MLE of the stationary point

Let us assume that n > k response values, say y1, y2, ..., yn, are observed on various combinations
of the input variables. Then, we may write model (3) in terms of the observations as

yi = α0 +
k∑

j=1

αjj(xij − ξj)2 +
k−1∑

j=1

k∑

h=j+1

αjh(xij − ξj)(xih − ξh) + εi, (i = 1, ..., n), (4)

where xij denote the i-th level of regressor Xj and εi ∼ N(0, σ2). It is also assumed that
the errors εi are independent for each observation. We will denote by ψ = (ξ, α, σ2) the
whole parameter vector, that has dimension p+1, where p = 1 + 2k + k(k−1)

2 . Indeed,
the parameter of interest ξ is a vector of k elements and the nuisance parameter α =
(α0, α11, ..., αkk, α12, ..., αk−1,k)T is a vector of dimension p′, with p′ = 1 + k + k(k−1)

2 .
Let us denote by ψ̂ the maximum likelihood estimator of ψ. The sampling distribution of ψ̂

is asymptotically approximated by a multivariate normal distribution with mean ψ and variance
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and covariance matrix Vψ(ψ) = H−1
ψ (ψ), where Hψ(ψ) is the Fisher information matrix of the

parameter vector ψ. In Appendix A it is shown that

Hψ(ψ) = Hψ(ξ, α, σ2) =
1
σ2




MMT MXξ 0k

(MXξ)T XT
ξ Xξ 0p′

0T
k 0T

p′
n

2σ2


 , (5)

where 0k is the zero vector of dimension k,

Xξ =




1 (x11 − ξ1)2 · · · (x1k − ξk)2 (x11 − ξ1)(x12 − ξ2) · · · (x1,k−1 − ξk−1)(x1k − ξk)
1 (x21 − ξ1)2 · · · (x2k − ξk)2 (x21 − ξ1)(x22 − ξ2) · · · (x2,k−1 − ξk−1)(x2k − ξk)
...

... · · · ...
... · · · ...

1 (xn1 − ξ1)2 · · · (xnk − ξk)2 (xn1 − ξ1)(xn2 − ξ2) · · · (xn,k−1 − ξk−1)(xnk − ξk)




and M is the k×n matrix, whose generic column is the k−dimensional vector 2A(xi−ξ), where
xi = (xi1, xi2, ..., xik)T is the combination of factors levels determined by the experimenter to
take the experimental run yi, ∀ i = 1, ..., n.

We are in particular interested in the k × k upper left sub-matrix of Vψ(ψ), which is given
by (see Graybill, 1983)

Vξ(ψ) = σ2
[
MMT −MXξ(XT

ξ Xξ)−1XT
ξ MT

]−1

and represents the asymptotic approximation of the variance covariance matrix of the parameter
of interest ξ. Hence, from the properties of the multivariate normal distribution, we have that

ξ̂ ≈ MNk(ξ,Vξ(ψ)), (6)

where MNk denotes the k-variate normal distribution.

2.1 A simulation study to evaluate the accuracy of the normal approximation

We perform a simulation study to examine the accuracy of normal approximation (6) when
k = 2, by checking if the empirical sampling distribution of ξ, obtained through simulation, is
close to it.

Let us assume that we know the true parameters of model (4) and consider a rotatable central
composite design (CCD) with four centre points. Therefore, at each step of the simulation study,
we need to draw n = 12 experimental runs. More specifically, we obtain 10000 samples of n = 12
response values by perturbing each true response datum with random errors generated from a
normal distribution with mean 0 and variance σ2 = 1. We use each of these samples to fit a
quadratic surface model and to compute the MLE of the stationary point, obtaining a sample of
10000 estimates. Then, given a fixed probability level of interest, say p, let us denote by Ep the
ellipse of constant probability density based on the bivariate normal approximation and such that
the probability of being inside the ellipse equals p. The accuracy of the normal approximation
is evaluated by computing the relative error

RE =
|p− p̂|

p
, (7)
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where p̂ is the proportion of simulated estimates of the stationary point which are inside Ep, for
different values of p.

The results of the simulations are showed in Table 1. The stationary point of the true
response functions involved in the study is located at the design centre (ξ = (0, 0)), inside the
experimental region (ξ = (0.5, 0.5)) and on the boundary of the experimental region (ξ = (1, 1)).
The surfaces with α = (100,−8,−9, 6) and α = (100,−2,−2, 0) have a maximum at ξ, but the
the first ones have a more elongated shape. When instead α = (100,−3, 2, 4) the true stationary
point turn out to be a saddle point. Let us notice that the relative errors in Table 1 are reasonably
low. It is important to take into account that the sample size used in the study is quite small
(n = 12). For instance, when ξ = (0, 0) and α = (100,−2,−2, 0), if we replicate the generation
of experimental runs at each factors combination (so that n = 24), the estimated relative errors
are 0.0233, 0.0270, 0.0280, 0.0280 and 0.0214 for p equals to 0.30, 0.50, 0.70, 0.90 and 0.95,
respectively.

Table 1: Relative errors (7), for different values of ξ, α = (α0, α11, α22, α12) and p.

α = (100,−8,−9, 6), Eigenvalues(A) = (−11.54, −5.46)

ξ p = 0.30 p = 0.50 p = 0.70 p = 0.90 p = 0.95

(0, 0) 0.0070 0.0134 0.0073 0.0049 0.0046

(0.5, 0.5) 0.0060 0.0024 0.0031 0.0010 0.0040

(1, 1) 0.0013 0.0044 0.0033 0.0007 0.0076

α = (100,−2,−2, 0), Eigenvalues(A) = (−2, −2)

ξ p = 0.30 p = 0.50 p = 0.70 p = 0.90 p = 0.95

(0, 0) 0.0270 0.0288 0.0427 0.0483 0.0436

(0.5, 0.5) 0.0097 0.0046 0.0219 0.0562 0.0598

(1, 1) 0.0120 0.0042 0.0219 0.0612 0.0669

α = (100,−3, 2, 4), Eigenvalues(A) = (2.70, −3.70)

ξ p = 0.30 p = 0.50 p = 0.70 p = 0.90 p = 0.95

(0, 0) 0.0037 0.0044 0.0029 0.0113 0.0112

(0.5, 0.5) 0.0060 0.0026 0.0004 0.0147 0.0168

(1, 1) 0.0077 0.0074 0.0047 0.0182 0.0189

3 Approximated confidence regions for the stationary point

The asymptotic distribution (6) can be used to derive approximated confidence regions for the
stationary point. From the properties of the multivariate normal distribution, such a region
with 100(1− α)% confidence level is given by of all the values ξ that satisfy

(ξ − ξ̂)T
[
Vξ(ψ̂)

]−1(ξ − ξ̂) ≤ kF (α; k, n− p), (8)

where Vξ(ψ̂) is the plug-in estimator of the asymptotic variance and covariance matrix of ξ̂ and
F (α; k, n − p) is the 1 − α quantile of the F distribution with k and n − p degrees of freedom.
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Hereafter we refer to this asymptotic confidence region as the “AC region”. Of course the case
k = 2 is the simpler one to get a plot of the AC region: it is possible to display the edge of
the region by drawing all points such that the inequality in (8) is an equality. When k = 3 it
is still possible to plot the edge of the region in a 3−dimensional space. However, in general
for k > 2, it is convenient to show the point-by-point projections of the k−dimensional region
into 2−dimensional planes. The same graphical procedure can be used to represent the BH
confidence regions.

In Sections 4 and 5 we provide some applications with data taken from the literature and
conducted using the statistical software R (R Development Core Team, 2009). In particular,
in Appendix B we illustrate a very user friendly software tool, which creates a graphical user
interface (GUI) to easily plot the AC regions when k = 2.

4 Two factor experiments

In this Section we use the data of three examples taken from the statistical literature to illustrate
the behavior of the AC regions for the stationary point, when two input variables are considered.
The BH regions are also displayed for a comparison. In all the three examples the experimental
design is a rotatable CCD with 4 centre points, which is the most widely used for fitting second
order response surfaces. Moreover the focus of the experiment is on the maximum point of the
surface. The data are provided in Table 2.

Table 2: Data of two factor experiments in Section 4

Data of Example 1

x1 x2 y

−1 −1 43.33

1 −1 49.97

−1 1 45.94

1 1 43.38

0 0 49.73

0 0 50.07

−√2 0 42.79√
2 0 47.17

0 −√2 47.07

0
√

2 45.06

0 0 49.43

0 0 50.22

Data of Example 2

x1 x2 y

−1 −1 43

1 −1 78

−1 1 69

1 1 73

0 0 76

0 0 79

−√2 0 48√
2 0 78

0 −√2 65

0
√

2 74

0 0 83

0 0 81

Data of Example 3

x1 x2 y

−1 −1 33

1 −1 27

−1 1 28

1 1 52

0 0 45

0 0 41

−√2 0 26√
2 0 33

0 −√2 25

0
√

2 37

0 0 42

0 0 46

4.1 Example 1

In a recent paper, Li et al (2007) used the desirability function approach to find the combinations
of glucose concentration (coded factor X1) and ammonium sulfate (coded factor X2), which
determine the best compromise between maximizing glutamine production and minimizing
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glutamate accumulation. In this Section, we consider only one of the two response variables,
i.e. the glutamine production (variable Y ), to provide an application of the proposed confidence
regions based on two factors.

Fitting the second order polynomial model, the F statistic to test the contribution of the
quadratic terms to the model is highly significant (p-value< 0.0001) and the multiple R2 is 0.987.
The estimated stationary point is ξ̂ = (0.532,−0.557) and turns out to be a maximum point since
the eigenvalues of matrix B̂ are (λ̂1, λ̂2) = (−0.96,−3.32) (both negatives). Moreover we resort
to the double linear regression (DLR) method, proposed by Bisgaard and Ankenman (1996),
to compute approximated confidence intervals for the eigenvalues of B. The 95% intervals we
obtain, that are (−1.37,−0.54) and (−3.73,−2.90) for λ1 and λ2 respectively, do not contain
zero and there is no reason to suspect the presence of a ridge in the surface. Let us also notice
that the estimated stationary point lies inside the experimental region, which is the circle of
radius

√
2. This is therefore a typical situation where it is convenient to construct confidence

regions for the location of the stationary point. Figure 1(b) shows the 90% and 95% AC regions
for ξ. The BH regions of the same confidence levels are also displayed in Figure 1(a) for a
comparison. The two procedures lead to very similar regions: those obtained using the AC
procedure are slightly smaller and entirely contained inside the experimental region. In general,
when there is a good fit of the model to the data and the fitted quadratic surface is not “flat”
around ξ̂ (depending on the eigenvalues of matrix B̂) the BH and AC regions are quite similar
in shape and size.

−2 −1 0 1 2

−
2

−
1

0
1

2

Example 1 − Figure (a)

X1

X
2

90%
95%

−2 −1 0 1 2

−
2

−
1

0
1

2

Example 1 − Figure (b)

X1

X
2

90%
95%

Figure 1: (a) BH confidence regions for ξ. (b) AC regions for ξ. Symbols • denote the experimental
runs and ∗ denotes the estimated stationary point.

4.2 Example 2

The data of a chemical process experiment presented in Section 2.8 of Myers et al. (2009) are
used to provide a second example with two factors. The input variables involved are the reaction
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temperature and the reactant concentration (X1 and X2 as coded factors, respectively). The
response variable to be maximized is the percent conversion of the chemical process of interest
(variable Y ). The fitted quadratic model has a very good fit (multiple R2 = 0.979). The F-test
for the contribution of the second order terms is significant (p-value< 0.001), meaning that it is
necessary to add the quadratic term to the first order model. The stationary point of the fitted
surface is ξ̂ = (0.626,−0.061), which is within the experimental region. The eigenvalues of B̂
are −2.674 and −11.078, indicating that ξ̂ is associated with maximum predicted response. By
using the DLR method, we obtain the 95% approximated confidence intervals (−5.084,−0.264)
and (−13.488,−8.668) for the eigenvalues of B. Therefore, both eigenvalues are statistically
significantly less than zero.

−2 −1 0 1 2

−
2

−
1

0
1

2

Example 2 − Figure (a)

X1

X
2

90%
95%

−2 −1 0 1 2

−
2

−
1

0
1

2

Example 2 − Figure (b)

X1

X
2

90%
95%

Figure 2: (a) BH confidence regions for ξ. (b) AC regions for ξ. Symbols • denote the experimental
runs and ∗ denotes the estimated stationary point.

In Figure 2(a) we can see that the 95% BH confidence region for the stationary point splits
into two disjoint and unbounded regions. The AC region of the same confidence level is instead
bounded and entirely embodied in the experimental region (see Figure 2(b)). Actually these
latter regions are always bounded and centered around the estimated stationary point, because
of their construction procedure. Let us notice that BH regions like those just obtained are not
unusual: these sets could consist of disconnected regions since some points could be associated
with maximizing points, while other points could be associated with saddle points (see Theorem
2.1 of Peterson et al., 2002). Confidence regions for ξ which are disjoint and open may indicate
that we have not sufficient information to conclude that the stationary point exists. However,
we agree with Lin and Peterson (2006, p. 76), who regard this behavior of the BH regions
as looking rather odd, in cases (such as the current one) where there is a statistical evidence
that matrix B is negative definite and, therefore, that the response is a concave function with a
unique stationary point.
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4.3 Example 3

The data from Box and Draper (2007, p. 252) are used as a third example with two factors.
Fitting model (1), we find that the quadratic terms contribute significantly to the model (p-
value< 0.01) and the multiple R2 is 0.918. The eigenvalues of matrix B̂ are −1.669 and
−9.206, so that the estimated stationary point, which is at ξ̂ = (1.138, 1.300), is a maximum
located in proximity but outside of the experimental region. The DLR method provides the
following 95% approximated confidence intervals for the eigenvalues of B̂: (−5.009, 1.671) and
(−12.547,−5.866). Actually, even the 75% approximated interval for the first eigenvalue contains
the zero value.

In such a situation, where, although ξ̂ is a maximum, the statistical evidence suggests that
matrix B is not necessarily negative definite, we find that the 90% and 95% AC regions are
obviously bounded, but quite large, indicating flexibility in using operating conditions not
exactly equal to ξ̂ (see Figure 3(b)). The 90% and 95% BH regions consist in two disconnected
and open regions (see Figure 3(a)).

−2 −1 0 1 2

−
2

−
1

0
1

2

Example 3 − Figure (a)

X1

X
2

90%
95%

−2 −1 0 1 2

−
2

−
1

0
1

2
Example 3 − Figure (b)

X1

X
2

90%
95%

Figure 3: (a) BH confidence regions for ξ. (b) AC regions for ξ. Symbols • denote the experimental
runs and ∗ denotes the estimated stationary point.

5 A three factor experiment

Let us consider the experiment about plant nutrients and optimum rates of fertilizer application
provided by Hader et al. (1957). The study investigates how copper (X1 as coded factor),
molybdenum (X2 as coded factor) and iron (X3 as coded factor) affect lettuce growth (variable
Y ), measured as grams dry weight after six weeks in solutions of fertilizers containing different
levels of the input variables. The goal is therefore to find the combination of factors levels that
maximizes Y . Note that the experimental design is not exactly rotatable, since a coded value
for X3 has been changed because of a minor calculation error (see Table E11.22b, p.386, of Box
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and Draper (2007), where the reader is referred to, in order to get the data). Actually four sets
of experimental runs are conducted, which correspond to as many combinations of nitrogen and
iron. In particular, in this section we consider the observed response values which correspond
to the nitrogen source NH+

4 + NO−
3 and the iron source Fe3+ .

From the fitted second order surface, we obtain that the F-test for the contribution of the
quadratic terms is significant (p-value< 0.001) and R2 = 0.903. The estimated stationary point
is at ξ̂ = (−0.416,−0.172, 0.036) and it represents a point of maximum, all the eigenvalues of B̂
being negative. However, not all these eigenvalues are statistically significantly less than zero,
since one of the 95% approximated confidence intervals obtained through the DLR method is
(−2.577, 1.385). Figure 4 shows the point-by-point projections of the 95% BH and AC regions
for ξ. As expected the AC regions are smaller than the BH ones. Anyway, it is evident that
both procedures indicate great flexibility in choosing the level of factor X2 which maximizes
the response variable. It is worth pointing out that if we look at the contributions of the single
second order terms to the full quadratic model, we find that the regression coefficient β22 is
not significantly different from zero (p-value ∼= 0.43). The other two quadratic terms, instead,
contribute significantly to the model (both p-values are less than 0.001).

X2

X
1

−2 −1 0 1 2

−
2

−
1

0
1

2

X3

X
1

−2 −1 0 1 2

−
2

−
1

0
1

2

X3

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

(a) BH regions

X2

X
1

−2 −1 0 1 2

−
2

−
1

0
1

2

X3

X
1

−2 −1 0 1 2

−
2

−
1

0
1

2

X3

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

(b) AC regions

Figure 4: Point-by-point projections of 95% confidence regions for ξ

If we fit the full quadratic model using only variables X1 and X3, there is a strong statistical
evidence that both the single second order terms contribute significantly to the model (p-
values< 0.0001). The estimated stationary point is (ξ̂1, ξ̂3) = (−0.446, 0.044) and turns out
to be a maximum. In Figure 5(a) we can see that the 95% BH confidence region is considerably
tighter than the point-by-point projection of the three-dimensional 95% BH region on the X1−X3

plane showed in Figure 4. In this case the stationary point is estimated very well and the two
procedures provide confidence regions quite similar.
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 Figure (a)

X1

X
3

90%
95%

−2 −1 0 1 2
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Figure (b)

X1

X
3

90%
95%

Figure 5: Confidence regions for (ξ1, ξ3) after removing variable X2: (a) BH regions, (b) AC regions.
Symbols • denote the experimental runs and ∗ denotes the estimated stationary point.

6 Coverage rates

A simulation study is undertaken to have an empirical check on the coverage probabilities of
the proposed confidence regions. Specifically, given a true quadratic response function with two
factors, we generate 1000 samples of size 12 from a rotatable CCD with four centre points. The
simulated errors are drawn from a normal distribution with zero mean and variance one. These
samples are used to compute the coverage rates of the 95% AC regions. Moreover, in order to
check if high coverage rates are related to excessively wide confidence regions, we compute the
proportion of simulated confidence regions, among those containing the true stationary point,
that are completely embodied in the experimental region (that is the circle of radius

√
2, denoted

by R1), in the circle of radius 3 (denoted by R2) or in the circle of radius 5 (denoted by R3).
The same computations are performed for the 95% BH regions.

Table 3 shows the results of the simulations for different values of ξ and α. In particular,
the values for α have been chosen in order to take into account different shapes and curvatures,
ensuring that the true stationary point is a point of maximum. The true values of ξ involved
lie at the design centre (ξ = (0, 0)), inside the experimental region (ξ = (0.5, 0.5)) and on the
boundary of the experimental region (ξ = (1, 1)). In most cases, both the procedures lead to
empirical coverage probabilities pretty close to the nominal value 0.95. Actually those of the AC
regions seem more changeable and tend to decrease as (i) the true stationary point moves away
from the design centre and (ii) the true response function is more “flat” around ξ. However, let
us notice that, when (i) or (ii) occur, the percentage of simulated fitted surface where the the
estimated stationary point lies outside the experimental region or where it doesn’t turn out to
be a maximum (although ξ is a maximum) tend to increase. When such situations appear in
real practical experiments, it is not of interest to construct confidence regions for the stationary
point, but it is appropriate to carry out further experimental runs.
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As regards the width of the confidence regions, in all the cases considered in Table 3, the
proportion of the AC regions that contain the true stationary point and are at the same time
close inside the experimental region (or R2, or R3) is considerably higher than that obtained
for the BH regions. Consider for instance the simulated results when α = (100,−2,−2, 0) and
ξ = (0.5, 0.5). The coverage rates are both very close to 0.95. However the 58% of the AC
regions containing ξ are inside the experimental region, while for the BH regions the percentage
is only about 21%. Of course, when a confidence region contains the true parameter, a smaller
size is preferred.

Table 3: Coverage rates for 95% BH and AC regions and proportion of regions containing the true
stationary point and contained in R1, R2 or R3, for different values of ξ and α.

α = (100,−2,−2, 0) α = (100,−8,−9, 6) α = (100,−2,−6, 4.5)

Eigenvalues A = Eigenvalues A = Eigenvalues A =

(−2, −2) (−11.54, −5.46) (−7.01, −0.99)

ξ BH AC BH AC BH AC

(0, 0) Coverage Rate 0.951 0.963 0.951 0.953 0.951 0.970

% regions inside R1 0.695 0.998 1 1 0.218 0.834

% regions inside R2 0.758 1 1 1 0.268 0.951

% regions inside R3 0.775 1 1 1 0.292 0.973

(0.5, 0.5) Coverage Rate 0.956 0.951 0.956 0.952 0.956 0.941

% regions inside R1 0.218 0.580 0.988 0.999 0.062 0.344

% regions inside R2 0.581 0.978 1 1 0.157 0.745

% regions inside R3 0.691 0.998 1 1 0.230 0.877

(1, 1) Coverage Rate 0.952 0.951 0.952 0.951 0.952 0.927

% regions inside R1 0 0 0 0 0 0.001

% regions inside R2 0.288 0.703 0.999 1 0.071 0.417

% regions inside R3 0.520 0.962 1 1 0.145 0.700

Note: R1, R2 and R3 denote respectively the experimental region (i.e. the circle of radius
√

2), the circle of radius 3 and

the circle of radius 5.

7 Discussion

In response surface methodology confidence regions on the stationary point are useful to
determine how precise our point estimate ξ̂ is and how much flexibility is available in choosing
optimum conditions. In this paper we exploit a reparametrization of the standard full quadratic
model to derive the asymptotic normal distribution of ξ̂ and then we use this distribution to
construct approximated confidence regions for ξ.

Some examples, where two or three factors are involved and the interest is to locate the
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maximum point, are showed in Sections 4 and 5. Unlike the standard regions for ξ obtained
through the BH procedure, the confidence regions we propose are always bounded because of
their construction and have in general smaller areas. A simulation study about coverage rates
presented in Section 6 clearly shows how BH and AC regions, with very similar observed coverage
probabilities, considerably differ in terms of size. Assuming that the interest is focused on the
maximum point of the true surface, let us remind that it is reasonable to construct a confidence
region for ξ when the estimated stationary point is actually a maximum and is located inside
the experimental region. In these cases confidence intervals for the eigenvalues of matrix B,
which can be obtained using different methods, are also computed to assess if the response is
a statistically concave quadratic function or not. When these intervals indicate that there is a
strong statistical evidence that matrix B is negative definite, we suggest to use the AC regions
rather than the BH ones: in many cases the two procedures give very similar regions (see the
numerical example in Subsection 4.1), but it is also possible that the BH method produces two
separate and unbounded regions (see the numerical example in Subsection 4.2).
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APPENDIX

A Derivation of the Fisher information matrix Hψ(ψ)

The likelihood function for the whole parameter vector ψ = (ξ,α, σ2) is given by

L = L(ξ,α, σ2|y, x1, ...,xn) = (2πσ2)−
n
2 ·

exp
{
− 1

2σ2

n∑

i=1

[
yi − α0 −

k∑

j=1

αjj(xij − ξj)2 −
k−1∑

j=1

k∑

h=j+1

αjh(xij − ξj)(xih − ξh)
]2

}
,

where y = (y1, y2, ..., yn) and xi = (xi1, xi2, ..., xik)T . With a slight abuse of notation, let us
denote the generic element of the (p + 1)× (p + 1) Fisher information matrix by

(Hψ(ψ))i,j = −E
[ ∂2

∂ψiψj
log L

]
, i, j = 1, ..., p + 1.

In order to obtain Hψ(ψ), it is convenient to partition it into the following blocks

Hψ(ψ) =




Hξξ(ψ) Hξα(ψ) Hξσ2(ψ)
HT

ξα(ψ) Hαα(ψ) Hασ2(ψ)
HT

ξσ2(ψ) HT
ασ2(ψ) Hσ2σ2(ψ)


 .
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After some simple calculations, we get that

−E
[ ∂2

∂ξ2
u

log L
]

=
1
σ2

n∑

i=1

{[
2αuu(xiu − ξu) +

u−1∑

l=1

αlu(xil − ξl) +
k∑

l=u+1

αul(xil − ξl)
]2

}
,

for u = 1, ..., k. We also obtain that

−E
[ ∂2

∂ξu∂ξs
log L

]
=

1
σ2

n∑

i=1

{[
2αss(xis − ξs) +

s−1∑

l=1

αls(xil − ξl) +
k∑

l=s+1

αsl(xil − ξl)
] ·

[
2αuu(xiu − ξu) +

u−1∑

l=1

αlu(xil − ξl) +
k∑

l=u+1

αul(xil − ξl)
]}

,

for u = 1, ..., k and s = 1, ..., k, with s 6= u. Thus in matrix notation we have that the k × k

upper left submatrix of Hψ(ψ) is

Hξξ(ψ) =
1
σ2

MMT .

In order to compute the k × p′ block matrix Hξα(ψ), we made the following computations

−E
[ ∂2

∂ξu∂α0
log L

]
=

1
σ2

n∑

i=1

{[
2αuu(xiu − ξu) +

u−1∑

l=1

αlu(xil − ξl)2 +
k∑

l=u+1

αul(xil − ξl)
]}

,

−E
[ ∂2

∂ξu∂αuu
log L

]
=

=
1
σ2

n∑

i=1

{[
2αuu(xiu − ξu) +

u−1∑

l=1

αlu(xil − ξl)2 +
k∑

l=u+1

αul(xil − ξl)
]
(xiu − ξu)2

}
,

−E
[ ∂2

∂ξu∂αsu
log L

]
= −E

[ ∂2

∂ξu∂αus
log L

]
=

=
1
σ2

n∑

i=1

{[
2αuu(xiu − ξu) +

u−1∑

l=1

αlu(xil − ξl)2 +
k∑

l=u+1

αul(xil − ξl)
]
(xis − ξs)(xiu − ξu)

}
,

for u = 1, ..., k and s = 1, ..., k, with s 6= u. Therefore in matrix notation we get

Hξα(ψ) =
1
σ2

MXξ.

Moreover −E
[

∂2

∂ξu∂σ2 log L
]

= 0 and hence Hξσ2(ψ) = 0k.
Finally, let us notice that the model (4) may be conveniently written in matrix notation as

y = Xξα + ε, with ε ∼ MNn(0n, σ2In).
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For a given value of ξ, this model has the structure of a normal linear model with design matrix
Xξ and hence we can refer to the Fisher information matrix of such a model, obtaining

[
Hαα(ψ) Hασ2(ψ)
HT

ασ2(ψ) Hσ2σ2(ψ)

]
=

1
σ2

[
XT

ξ Xξ 0p′

0T
p′

n
2σ2

]
.

We have therefore obtained that Fisher information matrix Hψ(ψ) is given by (5).

B A tool for computing the proposed confidence regions

We provide a very user friendly software tool for the display of the AC regions for the stationary
point when k = 2. The program, coded in R-programming language, uses the package
gWidgets (Verzani, 2007), which offers a relatively simple way of writing GUIs. This package is
therefore supposed to be correctly installed within R. The file containing the R code is called
“ConfRegStatPoint.R” and is available upon request.

Before using the program, the user must create a white-space separated text file, named
“data.txt” and without column names, which contains the experimental data. This file must
have n rows and 3 columns: each row represents an experimental run and contains the values xi1,
xi2 and yi (for i = 1, ..., n), that is the two factors levels in coded units and the corresponding
observed response value.

When running R, it is necessary to change the default starting directory to the one containing
the file “data.txt”. It can be easily done by choosing “Change directory” under the File menu
and selecting the directory of interest. Then, from the same menu, select “Source R code” and
open the file “ConfRegStatPoint.R”. An information dialog will pop-up, providing a message
about the location and the nature of the estimated stationary point, as shown in Figure 6.

Figure 6: Information dialog about the location and the nature of ξ̂

After clicking on the button “ok”, a window, such as that shown in the left panel of Figure
7, will open and will allow the user to specify the confidence level of the region and some plot-
style options. The confidence level can be selected in a sequence of values from 0.5 to 0.99 and
increment 0.01. It is possible to pick the lower and upper limits of the axes for both input
variables: a fixed list of values is available. Moreover the user can decide to display in the graph

• the experimental runs, denoted by the symbol •, by selecting the item TRUE from the
“Experimental Points” option;
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• the stationary point of the fitted surface, denoted by the symbol ∗, by choosing the item
TRUE from the “Estimated Stationary Point” option.

−2 −1 0 1 2 3
−

2
−

1
0

1
2

3

95 %  Confidence Region for the Stationary Point

X1

X
2

Figure 7: AC region for the experiment in Subsection 4.2, obtained using the R Gui described in
Appendix B.

Finally, if one choose “Yes” from the “Check the data” option, a window showing the data
appears, letting the user control if the data have been correctly inserted and imported in R. By
clicking on the button “plot”, the graph of the AC region is obtained. An example is provided
in Figure 7, where in the right panel the confidence region for the experiment in Subsection 4.2
is plotted, using the options selected in the GUI represented in the left panel.
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